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The metalog distributions constitute a new system of continuous univariate probability distributions designed
for flexibility, simplicity, and ease/speed of use in practice. The system is comprised of unbounded, semi-

bounded, and bounded distributions, each of which offers nearly unlimited shape flexibility compared to
previous systems of distributions. Explicit shape-flexibility comparisons are provided. Unlike other distributions
that require nonlinear optimization for parameter estimation, the metalog quantile functions and probability
density functions have simple closed-form expressions that are quantile parameterized linearly by cumulative-
distribution-function data. Applications in fish biology and hydrology show how metalogs may aid data and
distribution research by imposing fewer shape constraints than other commonly used distributions. Applica-
tions in decision analysis show how the metalog system can be specified with three assessed quantiles, how
it facilities Monte Carlo simulation, and how applying it aided an actual decision that would have been made
wrongly based on commonly used discrete methods.
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1. Introduction
In economics, business, engineering, science, and
other fields, continuous uncertainties frequently arise
that are not easily or well characterized by pre-
viously named continuous probability distributions.
Frequently, there are data available from measure-
ments, assessments, derivations, simulations, or other
sources that characterize the range of an uncertainty.
But the underlying process that generated the data is
either unknown or fails to lend itself to convenient
derivation of equations that appropriately character-
ize its probability density function (PDF), cumulative
distribution function (CDF), or quantile distribution
function.

Desiring a continuous probability distribution but
lacking appropriate functional forms, some analysts
have attempted to “fit” their data to previously
named distributions, often with less-than-satisfactory
results. For example, one may attempt to derive the
parameters of a normal distribution from a given set

1 See http://www.metalogdistributions.com for Excel implementa-
tion and supporting information.

of CDF data, but the resulting normal distribution
will never be a satisfactory representation if the data
itself is indicative of a skewed or bounded distribu-
tion, of which the normal is neither. While fitting the
same data set to the parameters of a beta distribu-
tion may yield a beta distribution with appropriate
skewness, the resulting beta distribution may not be
satisfactory if the data itself is representative of an
unbounded or semibounded distribution, which the
beta is not. Moreover, such fitting involves consider-
able effort and complexity since such probability dis-
tributions are often nonlinear in their parameters, lack
a closed-form expression, or both.

Moreover, among a set of previously named distri-
butions that have bounds that match natural bounds
of the data, it may be unclear which of many distribu-
tions to select. The choice of distribution can be impor-
tant because it inherently imposes shape constraints
that may or may not appropriately represent the data
and the process that generated it. In such cases, one
needs a distribution that has flexibility far beyond that
of traditional distributions—one that enables “the data
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to speak for itself” in contrast to imposing unexam-
ined and possibly inappropriate shape constraints on
that data. While this need applies to a wide range of
empirically generated frequency data, it can be espe-
cially acute when a probability distribution is used to
represent state-of-information (or belief-based) data,
as is common in decision analysis and in an increas-
ingly wide range of other modern applications of
probability.

When there are many continuous uncertainties with
very different characteristics to represent, as is often
the case in decision analysis, it may be simply imprac-
tical to attempt to find a continuous representation
tailored to each uncertainty using traditional meth-
ods. So decision analysts often resort to using discrete
(e.g., three branch) representations. These have mul-
tiple shortcomings, including that they artificially cut
off the tails and introduce undue lumpiness into the
analysis.

Desiring a continuous probability distribution but
lacking appropriate functional forms, other analysts
have resorted to sorting their data into buckets
to develop histograms, which have the advantage
of being able to represent the shape and location
of most any continuous uncertainty. However, his-
togram development also involves effort and com-
plexity, often includes an arbitrary choice of bucket
limits, and inherently results in a lumpy stair-step dis-
play rather than a smooth PDF. Maximum entropy
methods (Abbas 2003), which strive to add no infor-
mation beyond the data, similarly result in either a
stair-step or piecewise linear PDF. When knowledge
of smoothness is present in addition to the data, such
formulations are less than ideal.

For applications that require probabilistic (Monte
Carlo) simulation, the situation of having data but not
continuous distribution functions is even more chal-
lenging and complicated. Sampling directly from the
data itself (discrete sampling) is not satisfactory if one
believes there are gaps, lack of sufficient tail represen-
tation, or other shortcomings in the data. Sampling
from bucketed data (histograms) requires program-
ming of the buckets and is inherently lumpy. More-
over, even if an appropriate continuous distribution
has been identified (e.g., by a data “fit” to its param-
eters), most continuous CDFs cannot be solved ana-
lytically for their inverse CDF (quantile function),
which is required for simulation. So look-up tables or

nonlinear programming must be employed for each
sample.

The metalog family of distributions can solve all
these problems, and it has been proven effective and
easy to use in practice. The metalog distributions can
effectively represent a wide range of continuous prob-
ability distributions—whether skewed or symmetric,
bounded, semibounded, or unbounded. Scaling con-
stants that determine shape and location are uniquely
determined by a convenient linear transformation of
CDF data. In contrast to other continuous distribu-
tions, there is no need for nonlinear optimization to fit
parameters to the data. In addition, the metalog’s sim-
ple, algebraic closed forms are easy to program, mak-
ing it easy to replace lumpy, stair-step, or piecewise
linear PDF displays with smooth, continuous ones.

For simulation applications, the metalog distribu-
tions enable the calculation of a sample from a uni-
formly distributed random number according to a
simple, algebraic equation, thereby displacing any
need to use look-up tables or nonlinear optimiza-
tion for the calculation of each sample. Moreover,
over a wide range of applications, the results of the
simulation can be conveniently and accurately repre-
sented by a metalog, compressing what may other-
wise require thousands of data points into a simple
closed-form distributional representation.

For direct probability assessments in decision anal-
ysis and other Bayesian applications, the metalog dis-
tributions provide a convenient way to translate CDF
data into smooth, continuous, closed-from distribu-
tion functions that can be used for real-time feedback
to experts about the implications of their probability
assessments—free from the confines of other contin-
uous distributions that have more limited flexibility.
In practice, we have found that the resulting metalog
often yields a more accurate and authentic represen-
tation of expert beliefs than the data itself.

The unbounded metalog distribution is a quantile-
parameterized distribution (QPD) (Keelin and Powley
2011), and might be regarded as an easier to use and
more broadly applicable successor to the simple Q

normal distribution introduced in that paper. Like
the simple Q normal, the metalog distribution can
effectively represent a wide range of unbounded
continuous probability distributions. The metalog,
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however, has several advantages: an unlimited num-
ber of terms rather than just four (enabling more
flexible distributional representations); closed-form,
smooth (continuously differentiable) quantile-function
and PDF expressions, obviating any need for lookup
tables; closed-form analytic expressions for its central
moments; and closed-form analytic transforms that
conveniently express probability distributions that
are semibounded or bounded, while retaining the
unbounded metalog’s flexibility, smoothness, and
ease-of-parameterization properties.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the strengths
and weaknesses of existing families of flexible distri-
butions, desiderata, engineering methods for develop-
ing new flexible distributions, and how these methods
have been applied previously. Section 3 applies a
novel combination of these methods to develop the
unbounded metalog distribution and shows how its
flexibility compares with corresponding distributions
from previous distribution families, including those
of Pearson (1895, 1901, 1916), Johnson (1949), and
Tadikamalla and Johnson (1982). Section 4 shows how
the flexibility of unbounded the metalog along with
its linear quantile parameterization can be propagated
into the domain of semibounded and bounded dis-
tributions. The flexibility of these semibounded and
bounded metalogs is analyzed and compared with
corresponding Pearson and Johnson distributions,
among others. Section 5 further illustrates the flexi-
bility of the metalog distributions by showing how
well they approximate a wide range of existing distri-
butions. Section 6 presents applications. Applications
in fish biology and hydrology show how metalogs
may aid data and distribution research by imposing
fewer shape constraints than other commonly used
distributions. Applications in decision analysis show
how the metalog system can be specified with three
assessed quantiles, how it facilities Monte Carlo sim-
ulation, and how applying it aided an actual deci-
sion that would have been made wrongly based on
commonly used discrete methods. At the end of Sec-
tion 6, we provide guidelines for distribution selection
within the metalog system, using the previous appli-
cations as examples. Section 7 offers conclusions and
suggested directions for future research.

2. Literature Review and Motivation
2.1. Types of Probability Distributions
For context, we divide probability distributions into
three types—Type I, Type II, and Type III. Type I
distributions can be derived from an underlying
probability model, from which they gain much of their
appeal and legitimacy. For example, the normal distri-
bution was originally derived as a limiting case of the
previously known binomial distribution (De Moivre
1756) and is also the limiting shape for various cen-
tral limit theorems. Similarly, the exponential distribu-
tion can be derived as the probability distribution of
waiting times between events governed by a Poisson
process. The shape of a Type I distribution is deter-
mined largely or entirely by its underlying probabil-
ity model. For example, the normal distribution has
one location parameter, �, and one scale parameter, � ,
but no shape parameters. The exponential distribution
has a single scale parameter, �, but no shape parame-
ters. Such shape restrictions make Type I distributions
an excellent choice for practical use whenever the sit-
uation fits the probability model, and especially so
when empirical data that would otherwise character-
ize the distribution are sparse or unreliable.

Type II probability distributions gain their appeal
and legitimacy less from an underlying probability
model and more from their ability to represent spe-
cific probabilistic data or processes that are not known
to correspond to an existing Type I model. Most
commonly they are “generalizations” of other previ-
ously identified distributions, formed by adding one
or more parameters that enable a good fit to the spe-
cific (ad hoc) data under consideration. For example,
Mead (1965) generalized the logit-normal distribution
(proposed previously by Johnson 1949) by adding a
parameter that provides flexibility to fit an empiri-
cal distribution of carrot-root diameters. Theodossiou
(1998) developed a skewed version of a generalized
student t distribution on the basis that it provided
a better representation of financial data (e.g., log
daily returns of market-traded stocks) than previously
available distributions. Theodossiou’s (1998) distribu-
tion is itself a generalization of a previously gener-
alized student t distribution (McDonald and Newey
1988). By now, Type II distributions published in the
literature may number in the dozens or hundreds.
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Johnson et al. (1994) detail many Type I distributions
and Type II generalizations.

Type III distributions gain their appeal and legit-
imacy from being as broadly applicable as possible.
Unlike Type II distributions designed to match a spe-
cific class or classes of empirical data, Type III dis-
tributions would ideally match most any set of data.
This ideal includes, but is not limited to, effectively
representing data consistent with the numerous Type I
and Type II distributions. Moreover, with the success
and resurgence of the Bayesian revolution (McGrayne
2011) and the evolution of the theory and practice of
decision analysis (Howard 1968, Howard and Abbas
2015; Raiffa 1968, Keeney and Raiffa 1993, Spetzler
et al. 2016, among others), this ideal includes effec-
tively representing Bayesian priors and other state-of-
information-based (or belief-based) distributions over
a very wide range of probabilistic data.

2.2. Type III Families of Distributions
Since no single, universally applicable distribution
has yet been found, Type III probability distributions
have typically been developed as “systems” or “fam-
ilies” of distributions. Within a given family, criteria
are provided to enable practitioners to pick which
particular distribution to use and how to estimate its
parameters from data. The metalog system introduced
by this paper is such a family of distributions.

In his book on families of distributions, Ord (1972,
p. v) lamented that keeping track of the “wide-
ranging and rapidly expanding literature [on systems
of distributions] is probably a hopeless task.” This is
even more the case now—more than 40 years later. So,
for this paper, we shall content ourselves with discus-
sion of a few well-known systems of distributions—
specifically, the Pearson (1895, 1901, 1916), Johnson
(1949), and Tadikamalla and Johnson (1982) systems.
We shall also discuss the general family of QPDs,
Keelin and Powley (2011), because the unbounded
metalog is one of these. A more complete discussion
of Type III systems distributions can be found in Ord
(1972) and Johnson et al. (1994).

2.3. Type III Desiderata: Flexibility, Simplicity,
Ease/Speed of Use

Johnson (1949) identified several criteria for judging
the desirability of any Type III system of distributions,

including his own. In this view, Type I considerations
are less important than practical-use considerations
such as flexibility, simplicity, and ease of use. Similar
criteria were adopted and employed subsequently by
Mead (1965) and Johnson et al. (1994), among others.

2.3.1. Flexibility. Flexibility is the ability of the
family to represent a wide range of probabilistic data,
whatever their source or rationale may be. Since any
distribution can be easily modified via linear trans-
formation to accommodate changes in location and
scale, shape flexibility, in contrast to location and
scale, is key. To maximize shape flexibility in prob-
ability distribution design, one must eschew Type I
considerations that limit flexibility. However, such
Type I considerations may play useful a role for inter-
preting special cases of a more general and flexible
distribution.

Flexibility also includes the ability to match natu-
ral bounds, if any. For example, distances, times, vol-
umes, and other such variables often have a natu-
ral lower bound (zero) and no specific upper bound.
Percentages of a population or frequencies of occur-
rence typically have both a lower bound (zero) and an
upper bound (one). Other variables, such as bidirec-
tional error measurements or deviations from a point,
may be naturally unbounded both high and low.

2.3.2. Simplicity. Simplicity refers to the simplic-
ity of functional form of the PDF and CDF and/or
quantile function, ease of algebraic manipulation,
and ease of interpretation. For example, we consider
closed-form algebraic expressions to be simpler than
those that include limits, integrals, statistical functions
like beta and gamma, look-up tables, or implicitly
defined functions that require iteration.

2.3.3. Ease/Speed of Use. Two critical compo-
nents of ease of use are ease of distribution selection
and ease of parameter estimation. Absent Type I con-
siderations, the literature provides incomplete guid-
ance for distribution selection. For example, suppose
that a practitioner has a specific set of empirical data
that she wishes to represent with a continuous prob-
ability distribution. She knows this her data have a
natural lower bound of zero, no natural upper bound,
and are right skewed “sort of like a log-normal.”
There are, however, many distributions that look
“sort of like a log-normal.” Beyond the log-normal
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itself, these include the gamma, inverse gamma, chi-
squared, log gamma, log Pearson Type III, log logis-
tic, Burr, Rayleigh, and Weibull, among others. Which
should she choose?

Once she has selected a potentially suitable dis-
tribution, she cannot know whether she has a good
fit until she estimates the parameters of that distri-
bution from her data and views the result. While
many good parameter-estimation methods are avail-
able, there is no one method that is generally appli-
cable and easy to use in all cases. In most cases, such
methods need to be tailored to the particular mathe-
matical form of the distribution under consideration,
and even then may require a nontrivial multivariable
nonlinear optimization that can be solved only by iter-
ation within distribution-specific constraints (see, e.g.,
Theodossiou 1998). For this reason, a large literature
has evolved to address distribution-specific parame-
ter estimation.2

2.3.4. Today’s Requirements. Beyond ease of dis-
tribution selection and parameter estimation, ease of
use depends on purpose and context. At the time of
Johnson’s (1949) paper, before the advent of modern
computers, ease of use included having readily avail-
able distribution tables, as had been published for the
normal. Today this is much different. An easy-to-use
family of distributions should be easy to program (or
already be preprogrammed) within the most widely
used analytic processing and charting environment.3

Once programmed, it should be fast to input data, fast
and easy to estimate parameters, fast to calculate, and
fast to produce interpretable results.

Today, the requirements for flexibility, simplicity,
and especially ease/speed of use are critical and can
make the difference between use and nonuse in prac-
tice. Decades ago, a practitioner might have had days,
weeks, or months to select an appropriate distribution
and to develop an accurate fit to empirical or assessed
data for that distribution. In contrast, in today’s pro-
fessional practice of decision analysis, once data have
been assessed, a practitioner might have an hour or

2 Johnson et al. (1994), Volumes 1 and 2, provide an excellent sum-
mary and extensive literature references for parameter estimation
for a wide range of distributions.
3 Today this is Excel.

less to devote to developing, programming, and esti-
mating parameters for a dozen continuous uncer-
tainties with widely divergent shape and bounds
characteristics. Distribution selection and parameter
estimation must be fast, seamless, and largely with-
out need for manual intervention over a wide range
of data. Moreover, such a practitioner would need
to be able to make convenient, rapid adjustments to
these distributions to incorporate new information
or other changes in state-of-information-based expert
data and/or sensitivity analyses. Once formed, the
resulting distributions need to be convenient for use
in Monte Carlo simulation and ideally without the
need for look-up tables or iteration.

If any of these desiderata are not met, a decision
analyst might well abandon continuous distributions
altogether in favor of discrete approximations, despite
their limitations of artificially cutting off the tails and
introducing undue lumpiness into the analysis. This
particularly challenging environment with respect to
flexibility, simplicity, and ease/speed of use moti-
vated our development of the metalog family.

2.4. Engineering Design of
Probability Distributions

When designing Type II or Type III probability dis-
tributions to best accomplish desiderata as described
above, one faces a wide range of choices. These are
summarized in a strategy table (Howard and Abbas
2015, pp. 775–776; Spetzler et al. 2016, pp. 56–59) in
Table 1. The first row in each column identifies a
key decision, and subsequent rows identify specific
options that are available for that decision. Table 1
is not meant to cover all possible cases, but rather is
intended to be illustrative of key choices that have
been made by previous researchers and to provide
context for understanding the metalog family. It is
also intended to provide a point of reference for future
researchers who wish to develop new probability dis-
tributions or systems of distributions.

As shown in this table, when designing Type II or
Type III probability distributions, it is common to start
with a particular form of a particular base distribu-
tion, to modify it with a particular method, to develop
a method to estimate its parameters, and to provide
guidance for selection of which distribution to use.
Commonly used base distributions include the normal
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Table 1 Strategy Table for Engineering Probability Distributions

Base Form Modification Parameter Distribution
distribution modified method estimation selection

Normal Probability density function Parameter addition Method of moments Match moments

Logistic Cumulative distribution function Parameter substitution Maximum likelihood Match bounds

Student t Quantile function (inverse CDF) Transformation Probability-weighted …
and L moments

… Characteristic function Series expansion Quantile parameterization

(Edgeworth 1896, 1907; Pearson 1895, 1901, 1916;
Johnson 1949), logistic (Tadikamalla and Johnson 1982,
Balakrishnan 1992), and student t (McDonald and
Newey 1988, Theodossiou 1998). Commonly modi-
fied forms—any of which fully specify a probability
distribution—include the probability density function
(Edgeworth 1896, 1907; Pearson 1895, 1901, 1916);
Tadikamalla and Johnson 1982), cumulative distribu-
tion function (Burr 1942), quantile function (Karvanen
2006, Keelin and Powley 2011), and characteristic
function (Ord 1972, pp. 26–29). Commonly used
modification methods include parameter addition
(Mead 1965, McDonald and Newey 1988, Theodossiou
1998), parameter substitution (substituting an expres-
sion for one or more parameters; Pearson 1895, 1901,
1916), transformation (Johnson 1949, Tadikamalla and
Johnson 1982, Hadlock and Bickel 2016), and series
expansion (Edgeworth 1896, 1907).4 Commonly used
parameter estimation methods include the method
of moments (Pearson 1895, 1901, 1916), method of
maximum likelihood,5 probability-weighted moments
(Greenwood et al. 1979), L moments (Hosking 1990),
and quantile parameterization (Keelin and Powley
2011, Hadlock and Bickel 2016). For distribution selec-
tion within a family, the traditional method has been to
select a distribution capable of matching the moments
(Pearson 1895, 1901, 1916) of frequency data. But,

4 Johnson et al. (1994) and Ord (1972) provide perspectives on Gram–
Charlier, Edgeworth, and other series expansions.
5 Aldrich (1997) chronicles the development of maximum likeli-
hood by R. A. Fisher during 1912–1921.

given sufficient flexibility to match moments, one can
also select a distribution based on natural bounds or
other criteria.

To provide context for the metalog family, we now
show how previous researchers developed families of
Type III distributions by making a coordinated set of
choices across the columns of Table 1. We also cite
strengths and limitations of these families.

The first family of continuous distributions was de-
veloped by Karl Pearson (1895, 1901, 1916). In Pear-
son’s time, more and more people, Pearson among
them, were recognizing that the normal distribu-
tion was not the universal “end-all” of continuous
probability distributions. Specifically, it had become
increasingly evident that many probabilistic data sets,
survival data, for example, exhibited skewness and
kurtosis characteristics that the normal distribution
could neither explain nor represent. So Pearson set out
to develop a system of continuous distributions with
variable skewness and kurtosis characteristics.

In terms of Table 1, he selected the normal as his
base distribution, the differential equation that char-
acterizes the normal density function as the form to
modify, and parameter substitution as his modifica-
tion method. Specifically, he substituted a quadratic
function of the random variable X for the otherwise
constant variance (�25 in the denominator of this dif-
ferential equation. This substitution effectively intro-
duced variable skewness and kurtosis parameters into
his system. Depending on the values of these param-
eters, Pearson’s generalized-normal-density differen-
tial equation has a dozen solutions (Ord 1972).
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These include the normal, beta, uniform, exponential,
gamma, chi-square, F , student t, and Cauchy distri-
butions, among others.

As shown in Figure 1,6 Pearson’s system was the
first to collectively cover the entire accessible7 space
of combinations of third and fourth central moments.
Zero-flexibility distributions show up as points in this
diagram. These include the normal, uniform, logistic,
Gumbel, and exponential. The flexibility range of tri-
angular distributions is limited to a short line segment
as shown. In contrast, bounded Pearson distributions
(the beta) are sufficiently flexible to cover the entire
accessible area above the Pearson 3 line.8 Unbounded
Pearson distributions (Pearson 4 and student t) cover
the area below the Pearson 5 line. Because they are
symmetrical, t distributions with various degrees of
freedom (df) show up as points on the vertical axis.
The area between the Pearson 3 and 5 lines and inclu-
sive of them is the flexibility range for semibounded
Pearson distributions (gamma, chi-square, F , inverse
gamma, and inverse chi-square).

So while there is at least one Pearson distribu-
tion available for each point in Figure 1, Pearson’s
system offers zero flexibility for choosing bounded-
ness at a given point. For example, if a practitioner
needs a semibounded distribution with a combina-
tion of skewness and kurtosis that is either above
the Pearson 3 line or below the Pearson 5 line, there
is no Pearson distribution that satisfies this need.
Moreover, given a particular combination of skew-
ness and kurtosis, the Pearson system has zero flex-
ibility to match higher-order moments. This follows
from observing that Pearson introduced only two
additional parameters into the normal distribution.

6 Figure 1 is the format traditionally used to display the flexibil-
ity of families of continuous distributions. See Ord (1972), Johnson
(1949), Johnson et al. (1994), and Tadikamalla and Johnson (1982),
among others. The horizontal axis measures skewness in terms of
the square of the standardized skewness, while the vertical axis is
standardized kurtosis. This standardization ensures that �1 and �2

are location and scale independent. See Section 3.4 below for pre-
cise definitions.
7 “Accessible” in this context refers to the area below the “upper
limit for all distributions” line in Figure 1.
8 “Pearson 3,” “Pearson 4,” etc., are synonymous with the terms
“Pearson Type III,” “Pearson Type IV,” etc., as commonly used else-
where in the literature.

Finally, Pearson’s skewed unbounded distribution
(the Pearson 4) is so difficult to use that now, a cen-
tury later, researchers are still looking for practical
ways to do so (Nagahara 1999, Cheng 2011).

The Johnson (1949) and Tadikamalla and Johnson
(1982) families of distributions have similar limita-
tions. In terms of Table 1, Johnson (1949) selected the
normal as his base distribution and transformed it
using log, logit, and hyperbolic-sine transformations
to produce his “S” family of distributions that, like
Pearson’s family, covers the entire accessible space
of Figure 1. However, the only semibounded distri-
bution within that family is the log-normal, which
is limited to the log-normal line. All S distributions
above that line are bounded, and all below it are
unbounded. Tadikamalla and Johnson’s (1982) “L”
family is similar except that it takes the logistic in
place of the normal as its base distribution. Semi-
bounded distributions within the L family are limited
to the log-logistic line, while all L distributions above
it are bounded and below it are unbounded. More-
over, all distributions within both of these families
have two or fewer shape parameters, implying that,
like Pearson’s family, these families have no flexibility
to match higher-order moments.

Other noteworthy families of distributions are
based on series expansion. Best known are the Edge-
worth and Gram–Charlier series expansions of the
normal density function. While in theory these expan-
sions have flexibility to match higher-order moments,
they tend to be limited to modest areas in the �1 −�2

plane by difficulty of parameter estimation and other
practical considerations.4

In contrast, as presented below, the metalog family
provides a choice of boundedness for a wide range of
combinations of skewness and kurtosis, flexibility to
match higher-order moments, and a straightforward
method for parameter estimation.

3. The Unbounded Metalog
Distribution

3.1. A Generalized Logistic Distribution
In terms of Table 1, our development of the meta-
log family starts with the logistic as a base distribu-
tion, introduces modifications to its quantile function,
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Figure 1 Flexibility and Bounds Limitations of Pearson Distributions
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and uses three of the Table 1 modification methods—
parameter substitution, transformation, and series
expansion.

Among its Type I interpretations, the logistic is the
limiting distribution of the midrange sample (average
of largest and smallest random samples) as sample
size approaches infinity. We chose it as a base dis-
tribution, however, not because of its Type I inter-
pretations, but because of its simple closed-form
expressions for PDF, CDF, and quantile functions;
smoothness and symmetry; infinite differentiability in
closed form; tail behavior that is “in between” the
lighter-tailed beta and normal distributions and the
heavier-tailed student t distributions; and its wide
range of fully investigated and well-known properties
(Balakrishnan 1992).

In terms of which form to modify, we have cho-
sen the quantile function. Like Burr (1942), we prefer
to start with a closed-form CDF or quantile function
because, assuming differentiability, either one can be
easily differentiated to find the PDF. In contrast, start-
ing with the PDF often leads to a form that cannot be
conveniently integrated to find the CDF or quantile
function. We have chosen to modify the quantile func-
tion in particular because, in contrast to the CDF, it
expresses the value x of a random variable as a func-
tion of probability y, thereby having the simplicity of
being scale independent of x and also guaranteeing
ease of use in Monte Carlo simulation.9 Moreover, the

9 In Monte Carlo simulation via the inverse transform method, uni-
formly distributed random samples of y can simply be inserted
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Figure 2 (Color online) Skewed Distributions Produced by Systematically Varying the Standard Deviation Parameter of a Logistic Distribution
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logistic quantile function in particular is linear in its
parameters, and thus is already a QPD10 prior to any
modification. The logistic quantile function is

�+ s ln
y

1 − y
for 0 <y < 11 (1)

where � is the mean, median, and mode, and s is
proportional to standard deviation � = s�/

√
3.

For modification method, we use a combination of
parameter substitution (following Pearson’s lead) and
series expansion, where ai’s are real constants:

� = a1 + a44y− 0055+ a54y− 00552
+ a74y− 00553

+ a94y− 00554
+ · · · 1 (2)

s = a2 + a34y− 0055+ a64y− 00552
+ a84y− 00553

+ a104y− 00554
+ · · · 0 (3)

into a closed-form quantile function to yield corresponding sam-
ples of x. This is trivially simple for closed-form quantile functions
in contrast to the nonlinear optimization or look-up tables typically
required otherwise.
10 Keelin and Powley (2011) provide definitions, moments deriva-
tion, linear parameter estimation, and other QPD properties that
we further build upon in this paper.

Substituting these series expansions for the param-
eters � and s is easily interpreted. Note that the
unmodified logistic distribution (1) is smooth, sym-
metric, unimodal, and unbounded. Imagine how its
shape might change if the otherwise-constant � and s

were to change systematically. For example, given a
systematically increasing standard deviation param-
eter as one moves from left to right it, is nat-
ural to visualize that a right skewed distribution
would result. Alternatively, if the standard deviation
parameter decreases when moving from left to right,
one might visualize that a left skewed distribution
would result. A range of such distributions is shown
in Figure 2.

Similarly, one can envision that increasing � from
left to right would make a distribution fatter in
the middle and therefore have lighter tails. And by
systematically decreasing it as one moves from left
to right, the distribution would become thinner (or
spikier) in the middle with correspondingly heav-
ier tails. A range of such distributions is shown in
Figure 3.

Regarding (2) and (3), our choice of an unlimited
number of series-expansion terms for modifying �
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Figure 3 (Color online) Symmetric Distributions Produced by Systematically Varying the Mean Parameter of a Logistic Distribution
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and s might be envisioned to provide nearly unlim-
ited shape flexibility, the specifics of which we explore
in Section 3.5.

Substituting (2) and (3) into the logistic quantile
function (1) yields a generalized logistic quantile func-
tion, where n is the total number of series terms
in use:

Mn4y5 = a1 + a2 ln
y

1 − y
+ a34y− 0055 ln

y

1 − y

+ a44y− 0055+ · · · 0 (4)

For Mn4y5 to be a valid quantile function of a con-
tinuous distribution, it must be strictly increasing as a
function of y; that is, d6Mn4y57/dy > 0 for all y ∈ 40115.
Applying this requirement to (4) leads to a feasibility
condition on the constants ai:

a2

y41 − y5
+ a3

(

y− 005
y41 − y5

+ ln
y

1 − y

)

+ a4 + · · ·> 0

for all y ∈ 401150 (5)

For example, if ai = 0 for all i ≥ 3, then a2 must be
positive for this condition to hold. Since (4) reduces
to (1) in this case, the requirement that a2 be positive

is equivalent to requiring that the standard deviation
be positive, which must be true for any probability
distribution. Equation (5) is the generalization of this
requirement that corresponds to the generalized quan-
tile function (4). Any set of constants a = 4a11 0 0 0 1 an5

that satisfies (5) we shall henceforth call feasible.
The order of the terms in (2), (3), and (4) is some-

what arbitrary and could be changed without loss
of generality. We chose the order such that the first
term would be the median, the second term would
be a base shape (the logistic) that subsequent terms
modify, the third term would primarily modify skew-
ness, the fourth term would primarily modify kurto-
sis, and subsequent terms would alternate in further
refining the s and � parameters in (3) and (2), respec-
tively. The third and fourth terms could be reversed
if one wanted, for example, the third term to mod-
ify kurtosis and the fourth term to modify skewness.
This would be useful in a situation where n = 3 and
it is known from a priori considerations that a sym-
metric distribution with variable kurtosis properties
is appropriate.

Since (4) is linear in the constants a = 4a11 0 0 0 1 an5,
so can be the parameter estimation of these constants.
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Given a set of m distinct CDF data points 4x1y5 where
x = 4x11 0 0 0 1 xm5, y = 4y11 0 0 0 1 ym5, the constants are
related to the data by a set of linear equations:

x1 = a1 + a2 ln
y1

1 − y1
+ a34y1 − 0055 ln

y1

1 − y1

+ a44y1 − 0055+ · · · 1

x2 = a1 + a2 ln
y2

1 − y2
+ a34y2 − 0055 ln

y2

1 − y2

+ a44y2 − 0055+ · · · 1

000

xm = a1 + a2 ln
ym

1 − ym
+ a34ym − 0055 ln

ym
1 − ym

+ a44ym − 0055+ · · · 0

Equivalently, x = Ya, where x and a are column vec-
tors, and Y is the m×n matrix

Y=











1 ln
y1

1−y1
4y1 −0055ln

y1

1−y1
4y1 −0055 ···

000

1 ln
ym

1−ym
4ym−0055ln

ym
1−ym

4ym−0055 ···











0

If m= n and Y is invertible, then a is uniquely deter-
mined by a = Y−1x. If m ≥ n and Y has rank of
at least n, then a is can be conveniently estimated
using the familiar linear least squares equation a =

6YTY7−1YT x, which reduces to a=Y−1x when m= n.11

As such, this parameter estimation method can be
interpreted as the maximum likelihood estimator if a
Gaussian noise model is assumed. Note that it scales
directly with n, the number of series terms in use. The
size of the matrix to be inverted is n×n regardless of
the number of data points m.

These observations give rise to the following defi-
nitions and formalizations.

3.2. Metadistributions
We use the term “metadistribution” to reference the
class of a probability distributions that generalize a
base distribution by substituting for one or more of
its parameters an unlimited number of shape param-
eters. In doing so, the shape of a metadistribution
“goes beyond” the shape of the base distribution with

11 Keelin and Powley (2011) also includes a weighted least squares
formulation as an option for providing additional shape flexibility.

considerable added flexibility. To be useful, a meta-
distribution must also be associated with a practical
method for estimating its parameters.

The generalized logistic distribution above is one
specific example of a metadistribution, which we for-
mally define below as the “metalog” distribution. The
term “metalog” is short for “metalogistic.”

Whenever the functional form of a base distribution
is linear in its parameters, as is true for the quantile
function of the logistic distribution, one can employ
the same theoretical development method as above to
create a new metadistribution. For example, a meta-
normal distribution can be developed by replacing (1)
with the normal quantile function

�+�ê−14y51

where ê is standard normal CDF, and 0<y< 1. If one
then substitutes series expansions like (2) and (3) for �
and � , the “meta-normal” follows from the same sub-
sequent development as in Section 3.1. Similarly, one
could develop meta-Gumbel and meta-exponential
distributions—since these too possess quantile func-
tions that are linear in their parameters.

Such metadistributions defined with respect to
quantile functions, including the metalog, are gener-
ally quantile parameterized distributions as defined
by Keelin and Powley (2011). The simple Q normal
distribution used for illustration in that paper is akin
to the first several terms of the meta-normal.

Our initial explorations of the meta-normal distri-
bution show that its flexibility properties are simi-
lar to those of the metalog, which we discuss below.
For this paper, we have chosen to develop the meta-
log rather than the meta-normal because of its simple
closed-form expression and greater ease of use com-
pared to the meta-normal, which requires non-closed-
form look-up tables. For many practical applications,
either would suffice.

3.3. The Metalog Distribution
We define the metalog distribution by formalizing the
generalized logistic distribution of Section 3.1. Note
that we have subsumed the linear-least-squares solu-
tion for a within the following definition to express
the metalog, consistent with practical needs, as a func-
tion of its quantile parameters 4x1y5.
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Definition 1 (Metalog Quantile Function). The
metalog quantile function with n terms is

Mn4y3x1y5=

a1 +a2 ln
y

1−y
for n=21

a1 +a2 ln
y

1−y
+a34y−0055ln

y

1−y
for n=31

a1 +a2 ln
y

1−y
+a34y−0055ln

y

1−y

+a44y−0055 for n=41

Mn−1 +an4y−00554n−15/2 for odd n≥51

Mn−1 +an4y−0055n/2−1 ln
y

1−y
for even n≥61 (6)

where y is cumulative probability, 0 < y < 1. Given
x = 4x11 0 0 0 1 xm5 and y = 4y11 0 0 0 1 ym5 of length m>= n

consisting of the x and y coordinates of CDF data, 0<
yi < 1 for each yi, and at least n of the yi’s are distinct,
the column vector of scaling constants a= 4a11 0 0 0 1 an5

is given by

a= 6YT
nYn7

−1YT
n x1 (7)

where YT
n is the transpose of Yn, and the m × n

matrix Yn is

Yn=











1 ln
y1

1−y1000

1 ln
ym

1−ym











for n=21











1 ln
y1

1−y1
4y1 −0055ln

y1

1−y1000

1 ln
ym

1−ym
4ym−0055ln

ym
1−ym











for n=31











1 ln
y1

1−y1
4y1 −0055ln

y1

1−y1
y1 −005

000

1 ln
ym

1−ym
4ym−0055ln

ym
1−ym

ym−005











for n=41







Yn−1

∣

∣

∣

∣

∣

∣

4y1 −00554n−15/2

000

4ym−00554n−15/2







for odd n≥51







Yn−1

∣

∣

∣

∣

∣

∣

4y1 −0055n/2−1 ln4y1/41−y155000

4ym−0055n/2−1 ln4ym/41−ym55







for even n≥6. (8)

In the special case of m= n, (7) reduces to a=Y−1
n x.

Definition 2 (Metalog PDF). Differentiating (6)
with respect to y and inverting the result yields the
metalog PDF:12

mn4y5=

y41−y5

a2
for n=21

1
a2

y41−y5
+a3

(

y−005
y41−y5

+ln
y

1−y

) for n=31

1
a2

y41−y5
+a3

(

y−005
y41−y5

+ln
y

1−y

)

+a4

for n=41

[

1
mn−14y5

+an
n−1

2
4y−00554n−35/2

]−1

for odd n≥51

[

1
mn−14y5

+an

(

4y−0055n/2−1

y41−y5
+

(

n

2
−1
)

·4y−0055n/2−2 ln
y

1−y

)]−1

for even n≥60 (9)

Note that the PDF mn4y5 is expressed as a function
of cumulative probability y. To plot this PDF as is
customary, with values of random variable X on the
horizontal axis, use Mn4y5 on the horizontal axis and
mn4y5 on the vertical axis, and vary y ∈ 40115 to pro-
duce the corresponding values on both axes.

For (6) and (9) to be a valid probability distribution,
the matrix YT

nYn must be invertible, and the constants a
must be feasible. Since (6) is a QPD, invertibility is
guaranteed in all but pathological cases.13

12 For proof that this method yields the PDF, see Keelin and Powley
(2011).
13 “If such a [pathological] case were to occur, a small perturbation
would solve the problem. In practical applications, we have never
encountered a case where 0 0 0 [the matrix that needs to be inverted]
is singular” (Keelin and Powley 2011, p. 212).



Keelin: The Metalog Distributions
Decision Analysis 13(4), pp. 243–277, © 2016 INFORMS 255

Regarding feasibility, note that mn4y5 is the recipro-
cal of the feasibility expression on the left-hand side
of (5). Since this expression is positive if and only if
its reciprocal is positive, it follows that the feasibility
condition (5) can be restated stated as

mn4y5 > 0 for all y ∈ 401153 (10)

that is, a is feasible if and only if mn4y5 is everywhere
positive, and for any feasible a, mn4y5 is the probabil-
ity density function that corresponds to (6).

Note that we have placed no constraints on the
data 4x1y5. As such, there is no guarantee that any
particular data set will lead to feasibility. Indeed,
many data sets will not. If in doubt, feasibility must
be checked according to (5) or (10). In practice, this
means computing or plotting mn4y5 and ensuring that
the result is positive over all y ∈ 40115. If so, then a

is feasible and mn4y5 is a valid probability density
function. Later in this paper, we provide closed-form
constraints on the data 4x1y5 that ensure feasibility
for the case of n = 3. Any data set 4x1y5 that yields
feasible constants a we shall henceforth call feasible.

Given feasibility, certain special cases of these con-
stants can be readily interpreted. In all cases, a1 is the
median, as is evident from observing that all subse-
quent terms are zero when y = 005. Constants ai for
i ≥ 2 determine shape. When a2 > 0 and ai = 0 for all
i≥ 3, (6) is a logistic distribution exactly, with a2 being
directly proportional to the standard deviation, as is
obvious by comparison with (1). When ai = 0 for i ≥ 4,
a3 primarily controls skewness. Increasing a3 from
zero results in an increasingly right-skewed distribu-
tion, while increasingly negative values of a3 result in
an increasingly left-skewed distribution. When a4 > 0
and a2 = 0, a3 = 0, and ai = 0 for i ≥ 5, (6) reduces
to a linear function of y, which means that it is a
uniform distribution exactly. More generally, when
a2 > 0, a3 = 0, and ai = 0 for i ≥ 5, a4 determines kur-
tosis. Increasing a4 from zero reduces kurtosis, result-
ing in a symmetric distribution that is fatter than a
logistic in its midrange with correspondingly lighter
tails (e.g., more like a normal or symmetric beta dis-
tribution than a logistic). Reducing a4 from zero into
increasingly negative values increases kurtosis, pro-
ducing a distribution that is narrower than a logis-
tic in its midrange with correspondingly heavier tails

(e.g., more like a student t distribution with eight or
fewer degrees of freedom).

Generally, the metalog, like the logistic, is un-
bounded. However, it is bounded in the special case
that ai = 0 for all i ∈ 821 31 all even numbers ≥ 69. This
is evident from observing that this is the particular
set of ai’s that multiplies the unbounded expression
ln4y/41 − y55 in (6). If all these ai’s are zero, then only
bounded terms remain. Table 2 summarizes the above
interpretations.

3.4. Metalog Moments
We use traditional notation for moments of the n-term
metalog distribution Mn:

�′

k1n kth moment;
�k1n kth central moment;
�n standard deviation =�1/2

21n;
�1 square of standardized skewness = 4�31n/�

3
n5

2

(horizontal axes of Figures 1, 4, 6, and 7); and
�2 standardized kurtosis =�41n/�

4
n (vertical axes

of Figures 1, 4, 6, and 7).

Since the metalog is a QPD, then, as shown by Keelin
and Powley (2011), its kth moment is given simply by
the integral of the kth power of the quantile function

�′

k1n =

∫ 1

y=0
6Mn4y3x1y57

k dy0

For n= 5 terms, this integral yields an explicit expres-
sion in closed form for the mean

�′

115 = a1 +
a3

2
+

a5

12
(mean)1

from which it follows that the kth central moment for
the 5-term metalog is given by

�k15 =

∫ 1

y=0

[

M54y3x1y5−
(

a1 +
a3

2
+

a5

12

)]k

dy0

Though tedious to solve by hand, this integral can be
shown to yield the following central moments of M5

as closed-form polynomial expressions of the ai’s:

�215 =
1
3
�2a2

2 +

(

1
12

+
�2

36

)

a2
3 +a2a4 +

a2
4

12

+
a3a5

12
+

a2
5

180
1 (variance);
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Table 2 Interpreting Metalog Constants

Constants Interpretations

a1 Location, median
k∗8ai for all i ≥ 29, where k > 0 k is a scale parameter
ai for all i ≥ 2 Shape
a2 > 0, ai = 0 for all i ≥ 3 Mn is a logistic distribution
a4 > 0, ai = 0 for all i ∈ 82131 integers > 49 Mn is a uniform distribution
a2 > 0, a4 > 0, and ai = 0 for i ∈ 831 integers ≥ 59;

a2 and a4 need not sum to 1
Mn is a mixture of logistic and uniform distributions, where a1 is the mean and median of both.

Mn is unimodal and symmetric. In Figure 4, Mn plots to the vertical line segment from
4011085 to 4014025.

a2 > 0, a4 < 0, a4/a2 ≥ −4, and ai = 0 for all
i ∈ 831 integers ≥ 59

Mn is unimodal and symmetric. In Figure 4, Mn plots to the vertical line segment from 4014025
to 40117025.

a2 > 0, −1067 < a3/a2 < 1067, and ai = 0 for all i ≥ 4 Mn is unimodal and right skewed if a3 > 0, unimodal and left skewed if a3 < 0. In Figure 4,
Mn plots to the “3-term metalog” line segment from 4014025 to 44029180585.

ai = 0 for all i ∈ 82131 all even numbers ≥ 69 Mn is bounded
ai 6= 0 for any i ∈ 82131 all even numbers ≥ 69 Mn is unbounded

�315 = �2a2
2a3 +

1
24

�2a3
3 +

1
2
a2a3a4 +

1
6
�2a2a3a4 +

1
8
a3a

2
4

+a2
2a5 +

1
24

a2
3a5 +

1
180

�2a2
3a5 +

1
4
a2a4a5

+
1

60
a2

4a5 +
1

120
a3a

2
5 +

a3
5

3,780
1 (skewness);

�415 =
7
15

�4a4
2 +

3
2
�2a2

2a
2
3 +

7
30

�4a2
2a

2
3 +

a4
3

80
+

1
24

�2a4
3

+
7�4a4

3

1,200
+2�2a3

2a4 +
1
2
a2a

2
3a4 +

2
3
�2a2a

2
3a4

+2a2
2a

2
4 +

1
6
�2a2

2a
2
4 +

1
8
a2

3a
2
4 +

1
40

�2a2
3a

2
4 +

1
3
a2a

3
4

+
a4

4

80
+a2

2a3a5 +
1
2
�2a2

2a3a5 +
1

24
a3

3a5 +
1

40
�2a3

3a5

+
5
6
a2a3a4a5 +

2
45

�2a2a3a4a5 +
3
40

a3a
2
4a5 +

1
6
a2

2a
2
5

+
1

90
�2a2

2a
2
5 +

1
45

a2
3a

2
5 +

11�2a2
3a

2
5

7,560
+

1
15

a2a4a
2
5

+
11a2

4a
2
5

2,520
+

1
420

a3a
3
5 +

a4
5

15,120
1 (kurtosis).

As k and n increase, the number of polynomial terms
increases, but within a pattern that continues with
the kth central moment of the n-term metalog being a
closed-form kth order polynomial of the ai’s. For exam-
ple, the ninth central moment of the 5-term metalog
�915 has a closed-form expression that consists of a
ninth-order polynomial in the ai’s with 297 terms. The
fourth central moment of the 10-term metalog �4110

has 474 terms. These central moments are available

at http://www.metalogdistributions.com. For all such
central moments �k1n, the central moments of �k1 j

where j < n can be calculated from �k1n simply by set-
ting ai = 0 for all i > j .

Given central moments in closed form, correspond-
ing closed-form cumulants can also be calculated.
Thus, the cumulants of the sum of independent (irrele-
vant, according to Howard and Abbas 2015) metalog-
distributed random variables can be expressed in closed
form as the sum of the cumulants of these random
variables.

3.5. Metalog Shape Flexibility
The shape flexibility of the metalog expands with the
number of terms in use. As shown in Figure 4, for
n = 2, the metalog reduces to a logistic distribution
and thus to the single point (0, 4.2). For n = 3, met-
alog shape flexibility expands from a point to a line
segment as shown. This line segment contains the full
range of shapes shown in Figure 5.

For n = 4, the metalog shape flexibility further
expands to include all of area within “4-term metalog”
envelope.14 This area encompasses many common
distributions including normal, uniform, triangular,

14 Since the metalog is parameterized by data rather than moments,
we derived the metalog flexibility limits in Figure 4 by varying a=

4a11 0 0 0 1 an5 over its feasible range and deriving the corresponding
(�1, �2) feasible range from the moments expressions in Section 3.4.
This process was enhanced by Keelin and Powley’s (2011) proof
that the set of feasible a= 4a11 0 0 0 1 an5 is convex.

http://www.metalogdistributions.com
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Figure 4 (Color online) Shape Flexibility for Two- to Four-Term Metalog Distributions
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logistic, exponential, Gumbel, and student t dis-
tributions with four or more degrees of freedom.
Within the 4-term metalog envelope, the Pearson
family offers unbounded distributions only below
the Pearson 5 line. In contrast, the 4-term met-
alog offers unbounded distributions for a signifi-
cant portion of the Pearson semibounded area and
a significant portion (primarily unimodal) of the
Pearson bounded area. Similarly, the 4-term meta-
log offers substantial additional unbounded flexibility
compared to the areas below the log-normal and log-
logistic lines, which are the upper limits respectively
for unbounded Johnson S and L distributions.

There are certain relatively extreme skewness-kur-
tosis combinations that unbounded members of these
other Type III families can represent that the 4-term
metalog cannot. These include student t distributions

with three or fewer degrees of freedom, and other
distributions outside of the envelope.

However, with 5 or more terms, the metalog can
represent multimodal shapes and fifth- or higher-
order moments. In addition, the metalog’s (�11�2) cov-
erage expands further. For example, with 10 terms,
the metalog can reasonably represent student t dis-
tributions with three or two degrees of freedom. The
metalog cannot effectively represent the Cauchy dis-
tribution (student t with one degree of freedom), all
the moments of which are infinite.

4. Bounded and Semibounded
Metalogs

In many cases, one knows from a priori consider-
ations that a distribution of interest is either semi-
bounded or bounded. For example, uncertainties
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Figure 5 (Color online) Range of Shapes for the Three-Term Metalog
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involving sizes, weights, and distances might natu-
rally have a lower bound of zero and no definite
upper bound. Uncertainties that involve fractions of
a population are typically are bounded between zero
and 100%. For such cases, it is desirable to have flex-
ible, simple, easy-to-use distributions with bounds
that can be specified a priori.

We now develop such distributions. In terms of
Table 1, we use the metalog quantile function (6) as a
base distribution and modify it using the method of
transformation. This approach effectively propagates
metalog shape flexibility forward into the domain
of semibounded and bounded distributions. It also
preserves the closed-form simplicity of (6) as well
as the ease of use associated with linear quantile
parameterization.

Specifically, we use log and logit transformations,
respectively, to produce semibounded and bounded
members of the metalog family. These well-known
transformations have been used previously for a
similar purpose by Johnson (1949) and Tadikamalla
and Johnson (1982).

4.1. Log Metalog (Semibounded Metalog)
Distribution

Suppose that z = ln4x − bl5 is metalog distributed
according to (6), where bl is a known lower bound

for x. Setting ln4x − bl5 equal to (6) and solving for x

yields the log metalog quantile function with n terms:

M log
n 4y3x1y1 bl5 = bl + eMn4y5 for 0 <y < 11

= bl for y = 01 (11)

where x = 4x11 0 0 0 1 xm5, m ≥ n; each xi > bl, y =

4y11 0 0 0 1 ym5, 0 < yi < 1 for each yi; at least n of the yi’s
are distinct; z= 4ln4x1 −bl51 0 0 0 1 ln4xm−bl55 is a column
vector; Yn is (8); and

a= 6YT
nYn7

−1YT
n z0 (12)

Differentiating (11) with respect to y and inverting the
result yields the log metalog PDF:

mlog
n 4y5 = mn4y5e

−Mn4y5 for 0 <y < 11

= 0 for y = 01 (13)

where mn4y5 is (9) and Mn4y5 is (6). The log meta-
log feasibility condition is m

log
n 4y5 > 0 for all y ∈ 40115.

Since the quantity e−Mn4y5 is always positive, this con-
dition is equivalent to (10). Some interpretations of
log metalog constants are provided in Table 3.

Similarly, for representations that have a known
upper bound bu and no lower bound, the transform
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Table 3 Interpreting Log Metalog Constants

Constants Interpretations

bl Location, lower bound
a1 Scale
ai , for all i ≥ 2 Shape

a2 > 0, ai = 0,
for all i ≥ 3

M log
n is a log-logistic distribution, also known in
economics as the Fisk distribution

a4 > 0, ai = 0,
for all i ∈ 82131
integers > 49

M log
n is a log-uniform distribution (i.e., ln4x − bl 5

is uniformly distributed)

z = − ln4bu − x5 yields a corresponding negative-log
4nlog5 quantile function and PDF

Mnlog
n 4y3x1y1 bu5 = bu − e−Mn4y5 for 0 <y < 11

= bu for y = 11

mnlog
n 4y5 = mn4y5e

Mn4y5 for 0 <y < 11

= 0 for y = 11

Figure 6 (Color online) Shape Flexibility for Two- to Four-Term Semibounded Metalog Distributions
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where x= 4x11 0 0 0 1 xm5, each xi < bu, z= 4− ln4bu − x151

0 0 0 1− ln4bu − xm551 y = 4y11 0 0 0 1 ym510 < yi < 1 for
each yi1 and (12) determines a.

4.2. Log Metalog Shape Flexibility
Like the metalog, log metalog shape flexibility ex-
pands with the number of terms in use. However, the
addition of a lower bound parameter bl increases the
shape dimensionality by one for each value of n. For
example, the 2-term metalog is a point in the (�11�25

plot, and the 3-term metalog is a line segment. In con-
trast, the 2-term log metalog is a line in the (�11�25

plot, and the 3-term log metalog is an area. Effectively,
this means that for any given number of terms n, the
log metalog is more flexible than the metalog.

As shown in Figure 6, flexibility of the 2-term log
metalog is simply that of the log-logistic line. Equiv-
alently, this is the flexibility of the Fisk distribution
in economics, which has been used in to represent



Keelin: The Metalog Distributions
260 Decision Analysis 13(4), pp. 243–277, © 2016 INFORMS

survival data. The 3-term metalog increases this flex-
ibility to cover the area between the upper and lower
limits shown. The 4-term log metalog covers the
expanded limits between the upper and lower 4-term
lines shown. Unlike the “4-term metalog envelope” in
Figure 4, these upper and lower limits extend indefi-
nitely down and to the right corresponding to indef-
initely larger values for �1 and �2. From Figure 6,
it is evident that this 4-term semibounded metalog
offers far more flexibility than the Pearson (1895, 1901,
1916) semibounded distributions. In addition, it offers
far more flexibility than the semibounded Johnson S
and L distributions (Johnson 1949, Tadikamalla and
Johnson 1982, respectively), which are limited to the
log-normal and log-logistic lines, respectively.

With five or more terms, the log metalog’s (�11�2)
coverage expands further, providing a compelling op-
tion for representing a wide range of semibounded
distributions. In addition, additional terms provide
additional flexibility to match fifth- and higher-order
moments.

4.3. Logit Metalog (Bounded Metalog)
Distribution

The logit metalog distribution is useful for represen-
tations that have known lower and upper bounds, bl
and bu, respectively, where bu > bl. The logit metalog
distribution is the metalog transform that corresponds
to z= logit4x5= ln44x−bl5/4bu −x55 being metalog dis-
tributed. Setting ln44x − bl5/4bu − x55 equal to (6) and
solving for x yields the logit metalog quantile func-
tion with n terms:

M logit
n 4y3x1y1 bl1 bu5 =

bl + bue
Mn4y5

1 + eMn4y5
for 0 <y < 11

= bl for y = 01

= bu for y = 11 (14)

where x = 4x11 0 0 0 1 xm51 bl < xi < bu for each xi; y =

4y11 0 0 0 1 ym5, 0 < yi < 1 for each yi; z = 4ln44x1 − bl5/
4bu − x1551 0 0 0 1 ln44xm − bl5/4bu − xm555; and (12) deter-
mines a. Differentiating (14) with respect to y and
inverting the result yields the logit metalog PDF:

mlogit
n 4y5 = mn4y5

41 + eMn4y552

4bu − bl5e
Mn4y5

for 0 <y < 11

= 0 for y = 0 or y = 11 (15)

where mn4y5 is (9) and Mn4y5 is (6). The logit met-
alog feasibility condition is m

logit
n 4y5 > 0 for all y ∈

Table 4 Interpreting Logit Metalog Constants

bl and bu Location, lower and upper bound
bu − bl where

bu > bl

Scale

ai , for all i ≥ 1 Shape

a2 > 0, ai = 0,
for all i ≥ 3

M logit
n is a logit-logistic distribution (Wang and
Rennolls 2005), also known as the Tadikamalla
and Johnson LB distribution (Tadikamalla and
Johnson 1982, Balakrishnan 1992)

a1 = 0, 0 < a2 < 1,
ai = 01 for all i ≥ 3

M logit
n is a unimodal logit-logistic distribution

a1 = 0, a2 = 1, ai = 0,
for all i ≥ 3

M logit
n is a uniform distribution

a1 = 0, a2 > 1, ai = 0,
for all i ≥ 3

M logit
n is a U-shaped, symmetric logit-logistic
distribution

40115. Since the quantity 41 + eMn4y552/44bu −bl5e
Mn4y55 is

always positive, this condition is equivalent to (10).
Some interpretations of logit metalog constants are
provided in Table 4.

4.4. Logit Metalog Shape Flexibility
Like the metalog and log metalog, logit metalog shape
flexibility expands with the number of terms in use.
However, the presence of an upper bound parameter
in addition to a lower bound parameter increases the
shape dimensionality for any value of n by two rela-
tive to the metalog and by one relative to the log met-
alog. For example, the two-term metalog is a point in
the (�1, �2) plot and the three-term metalog is a line
segment. In contrast, the two-term logit metalog is a
area in the (�1, �2) plot and the three-term logit met-
alog is a broader area plus flexibility to match a fifth
moment. Effectively, this means that for any given
number of terms n, the logit metalog is more flexible
than either the metalog or log metalog.

As shown in Table 4, the two-term logit meta-
log is also known as the Tadikamalla and Johnson
LB distribution. As shown in Figure 7, the flexibil-
ity of this distribution is the entire accessible area
down to and including the log-logistic line. The three-
term logit metalog increases this flexibility to cover
the entire accessible area down to and including the
“3-term bounded metalog lower limit.” The four-
term logit metalog covers the entire accessible dis-
play area shown in Figure 7. Its lower limit includes
the following points that are below that display area:
401215, 40011295, 40041405, 411525, 41081705, 430051955,
440811355, and (10.5,330).
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Figure 7 (Color online) Shape Flexibility for Two- and Three-Term Bounded Metalog Distributions
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Like the upper and lower limits in Figure 6, the
upper and lower limits in Figure 7 extend indefinitely
down and to the right.

Thus, it is evident that the four-term bounded
metalog offers far more flexibility than the Pearson
bounded distributions. In addition, it offers far more
flexibility than the Johnson S and L bounded distri-
butions, which are limited to the areas above the log-
normal and log-logistic lines, respectively.

With five or more terms, the logit metalog’s (�11�2)
coverage expands further, providing a compelling
option for representing a wide range of bounded
distributions. In addition, additional terms provide

additional flexibility to match fifth- and higher-order
moments.

5. Metalog vs. Alternative
Representations of Traditional
Distributions

When the CDF data 4x1y5 are from a known source
distribution, there would ordinarily be no need to
represent these CDF data with a metalog. However,
metalog representations of CDF data from previ-
ously named source distributions may provide insight
about the range of effectiveness and limitations of
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Figure 8 (Color online) M5 Representation of an Extreme Value Distribution
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metalog representations and about metalog perfor-
mance compared to alternatives. The alternatives we
consider include a three-branch discrete approxima-
tion with 30%, 40%, and 30% probabilities assigned to
the 10%, 50%, and 90% quantiles. They also include
a range of QPDs, including the normal, the simple Q

normal (Keelin and Powley 2011), the logistic, and
metalog distributions with various numbers of terms.

The figures and tables below compare these alterna-
tives based on CDF data taken from a wide range of
source distributions. In each case, we use 105 points
from the CDF of the source distribution to param-
eterize the metalog and alternative representations.
These 105 points correspond to y = 41/11000, 3/11000,
6/11000, 10/11000, 20/110001 0 0 0 1980/11000, 990/11000,
994/11000, 997/11000, 999/110005. For each yi, the cor-
responding xi is the inverse CDF of the source dis-
tribution. For source distributions with known upper
and/or lower bounds, we use the corresponding log
or logit metalog.

5.1. Unbounded Source Distributions
For example, Figure 8 illustrates how M5 approxi-
mates a particular extreme value distribution 4�= 100,
� = 20, � = −0055. Visually, the metalog CDF is virtu-
ally indistinct from that of the extreme value source
distribution, and the PDFs are very similar. To mea-
sure the accuracy of this approximation, we use
the Kolmogorov–Smirnoff (K–S) distance (maximum
cumulative-probability deviation on the CDFs). For
convenience, we measure this as the maximum over
the 105 points defined above. In this case, the K–S
distance is 0.009, which means that the difference

between the source-distribution and M5 CDFs is
everywhere less than 1% probability.

Table 5 shows this K–S distance for a range of
unbounded source distributions and approximation
methods. Based on the rankings at the bottom of this
table, M4 and M5 are better that the other approxima-
tion methods, and M5 is best overall.

5.2. Semibounded Source Distributions
For a range of semibounded source distributions, we
similarly compare the log metalog to other approxi-
mation methods. Table 6 shows the results. The log
metalog approximations with three to five terms gen-
erally rank better than the other methods. In addi-
tion, the log metalog approximations have the same
bounds as the source distributions, whereas the other
approximation methods (discrete, normal, simple Q

normal, and logistic) do not.

5.3. Bounded Source Distributions
For a range of bounded source distributions, we sim-
ilarly compare the logit metalog to other approxima-
tion methods. Table 7 shows the results. The logit
metalog approximations with three to five terms gen-
erally rank better than the other methods. In addition,
the logit metalog approximations have the same high
and low bounds as the source distributions, whereas
the other approximation methods do not.

While most of the source distributions in Table 3
are unimodal, note that Beta (� = 008, � = 009) and
Beta (�= 009, �= 009) are bimodal (U shaped) and are
represented by the logit metalog with a high degree of
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Table 5 Accuracy of Various Approximations for Unbounded Source Distributions

K–S distance

Approximation method

QPD
Discretea

Metalog
p: 30–40–30 Simple

Source distribution q: 10–50–90 Normal Q normal Logistic M2 M3 M4 M5

Normal (�= 50, � = 15) 00200 00000 00000 00035 00035 00035 00006 00006
Logistic (�=40, s= 406) 00200 00032 00009 00000 00000 00000 00000 00000
Student t 4df = 65 00200 00043 00019 00012 00012 00012 00008 00008
Extreme value (�= 100, � = 20, �= −005) 00200 00064 00020 00093 00093 00070 00017 00009
Extreme value (�= 100, � = 20, �= −002) 00200 00027 00004 00056 00056 00047 00008 00008
Extreme value (�= 100, � = 20, �= −00025) 00200 00102 00039 00111 00111 00036 00028 00006

Maximum 00200 00102 00039 00111 00111 00070 00028 00009
Average 00200 00045 00015 00051 00051 00033 00011 00006

Rank based on lowest maximum 8 5 3 6 6 4 2 1
Rank based on lowest average 8 5 3 6 6 4 2 1

aApproximation is bounded, whereas source distribution is unbounded.

Table 6 Accuracy of Various Approximations for Semibounded Source Distributions

K–S distance

Approximation method

QPD
Discretea

Log metalog
p: 30–40–30 Simple

Source distribution q: 10–50–90 Normalb Q normalb Logisticb M log
2 M log

3 M log
4 M log

5

Log-normal (�= 0, � = 005) 00200 00130 00068 00140 00035 00035 00006 00006
Log-normal (�= 0, � = 003) 00200 00078 00026 00092 00035 00035 00006 00006
Log-normal (�= 0, � = 0015) 00200 00039 00012 00060 00035 00035 00006 00006
Weibull (�= 3, �= 3) 00200 00023 00009 00058 00103 00037 00022 00006
Weibull (�= 7, �= 7) 00200 00044 00009 00066 00103 00037 00022 00006
Gamma (�= 4, � = 2) 00200 00088 00029 00106 00062 00038 00011 00006
Gamma (�= 2, � = 2) 00200 00124 00056 00142 00078 00038 00015 00006
Inverse gamma (�= 3, �= 1) 00200 00240 ∗ 00245 00068 00038 00012 00006
Inverse gamma (�= 5, �= 005) 00200 00174 00149 00179 00059 00038 00010 00006
Exponential (�= 005) 00200 00174 00130 00193 00103 00037 00022 00006
Chi-squared (df = 3) 00200 00143 00077 00161 00087 00038 00017 00006
Chi-squared (df = 6) 00200 00101 00038 00119 00068 00038 00012 00006
Inverse chi-squared (df = 3) 00200 00388 ∗ 00394 00087 00038 00017 00006
Inverse chi-squared (df = 6) 00200 00240 ∗ 00245 00068 00038 00012 00006
F 4df1 = 11df2 = 15 00200 00621 ∗ 00623 00020 00020 00001 00001
F 4df1 = 151df2 = 305 00200 00106 00045 00118 00039 00033 00007 00006

Maximum 00200 00621 00149 00623 00103 00038 00022 00006
Average 00200 00170 00054 00184 00066 00036 00013 00006

Rank based on lowest maximum 6 7 5 8 4 3 2 1
Rank based on lowest average 8 6 4 7 5 3 2 1

aApproximation is bounded, whereas source distribution is semibounded. In addition, the low bound of approximation does not correspond to the low bound
of source distribution.

bApproximation is unbounded, whereas source distribution is semibounded.
∗The approximation method does not yield a valid probability distribution.
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Table 7 Accuracy of Various Approximations for Bounded Source Distributions

K–S distance

Approximation method

QPD
Discretea

p: 30–40–30
Log metalog

Simple
Source distribution q: 10–50–90 Normalb Q normalb Logisticb M logit

2 M logit
3 M logit

4 M logit
5

Beta (�= 305, �= 305) 00200 00029 00005 00066 00024 00024 00004 00004
Beta (�= 9, �= 305) 00200 00054 00012 00084 00044 00031 00008 00005
Beta (�= 008, �= 009) 00200 00106 ∗ 00146 00013 00005 00002 00001
Beta (�= 60, �= 105) 00200 00138 00069 00157 00085 00037 00017 00006
Beta (�= 102, �= 102) 00200 00076 00004 00115 00005 00005 00001 00001
Beta (�= 009, �= 009) 00200 00095 ∗ 00135 00003 00003 00000 00000
Uniform (A= 1, B = 1) 00200 00088 00000 00127 00000 00000 00000 00000
Triangular (A= 5, B = 20, C = 25) 00200 00077 00016 00112 00033 00019 00009 00003

Maximum 00200 00138 00069 00157 00085 00037 00017 00006
Average 00200 00083 00018 00118 00026 00016 00005 00002

Rank based on lowest maximum 8 6 4 7 5 3 2 1
Rank based on lowest average 8 6 4 7 5 3 2 1

aBounds of approximation do not correspond to bounds of source distribution.
bApproximation is unbounded, whereas source distribution is bounded.
∗The approximation method does not yield a valid probability distribution.

accuracy (K–S distance ≤ 00001). In addition, note that
nonsmooth PDFs (uniform and triangular) are well
represented (K–S distance ≤ 00003).

5.4. Increased Accuracy with Higher-Order Terms
Increasing the number of terms beyond 5 further

Figure 9 (Color online) How 10 Terms Increases Accuracy Compared to 5
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increases accuracy. For example, Figure 9 shows how
the 5-term metalog approximation of the extreme
value distribution in Figure 8 becomes nearly exact
when using 10 terms. Similar increased accuracy can
be observed across the entire range of source dis-
tributions considered previously. Specifically, Table 8
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Table 8 How Additional Terms Increase Accuracy

K–S distance

Metalog
Unbounded
Source distributions M5 M6 M7 M8 M9 M10

Normal (�= 50, � = 15) 00006 00002 00001 00001 00001 00000
Logistic (�= 40, s= 406) 00000 00000 00000 00000 00000 00000
Student t (df = 6) 00008 00004 00002 00002 00002 00001
Extreme value (�= 100, � = 20, �= −005) 00009 00002 00001 00001 00001 00000
Extreme value (�= 100, � = 20, �= −002) 00008 00003 00002 00001 00001 00000
Extreme value (�= 100, � = 20, �= −00025) 00006 00005 00005 00001 00000 00000

Maximum 00009 00005 00005 00002 00002 00001
Average 00006 00003 00002 00001 00001 00000

Rank based on lowest maximum 6 4 5 3 2 1
Rank based on lowest average 6 5 4 3 2 1

Log metalog
Semibounded
Source distributions M log

5 M log
6 M log

7 M log
8 M log

9 M10
log

Log-normal (�= 0, � = 005) 00006 00002 00001 00001 00001 00000
Log-normal (�= 0, � = 003) 00006 00002 00001 00001 00001 00000
Log-normal (�= 0, � = 0015) 00006 00002 00001 00001 00001 00000
Weibull (�= 3, �= 3) 00006 00004 00003 00001 00000 00000
Weibull (�= 7, �= 7) 00006 00004 00003 00001 00000 00000
Gamma (�= 4, � = 2) 00006 00002 00002 00001 00000 00000
Gamma (�= 2, � = 2) 00006 00003 00002 00001 00000 00000
Inverse gamma (�= 3, �= 1) 00006 00002 00002 00001 00000 00000
Inverse gamma (�= 5, �= 005) 00006 00002 00001 00001 00000 00000
Exponential (�= 005) 00006 00004 00003 00001 00000 00000
Chi-squared 4df = 35 00006 00003 00003 00001 00000 00000
Chi-squared 4df = 65 00006 00002 00002 00001 00000 00000
Inverse chi-squared 4df = 35 00006 00003 00003 00001 00000 00000
Inverse chi-squared 4df = 65 00006 00002 00002 00001 00000 00000
F 4df1 = 11df2 = 15 00001 00000 00000 00000 00000 00000
F 4df1 = 151df2 = 305 00006 00002 00001 00000 00000 00000

Maximum 00006 00004 00003 00001 00001 00000
Average 00006 00002 00002 00001 00000 00000

Rank based on lowest maximum 6 5 4 3 2 1
Rank based on lowest average 6 5 4 3 2 1

Logit metalog
Bounded
Source distributions M logit

5 M logit
6 M logit

7 M logit
8 M logit

9 M logit
10

Beta (�= 305, �= 305) 00004 00001 00000 00000 00000 00000
Beta (�= 9, �= 305) 00005 00002 00001 00000 00000 00000
Beta (�= 008, �= 009) 00001 00000 00000 00000 00000 00000
Beta (�= 60, �= 105) 00006 00003 00003 00001 00000 00000
Beta (�= 102, �= 102) 00001 00000 00000 00000 00000 00000
Beta (�= 009, �= 009) 00000 00000 00000 00000 00000 00000
Uniform (A= 1, B = 1) 00000 00000 00000 00000 00000 00000
Triangular (A= 5, B = 20, C = 25) 00003 00003 00002 00002 00001 00001

Maximum 00006 00003 00003 00002 00001 00001
Average 00002 00001 00001 00000 00000 00000

Rank based on lowest maximum 6 5 4 3 2 1
Rank based on lowest average 6 5 4 3 2 1
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shows how accuracy increases with each additional
term as the number of terms increases from 5 to 10.

Based on Tables 5–8, we observe that the meta-
log distributions are capable of closely approximating
a wide range of traditional distributions, and typi-
cally do so with greater accuracy than other practical
alternatives.

6. Applications
We now turn to two applications. The first illus-
trates how the metalog system can produce insight
about frequency data that would not be possible
using traditional distributions, thereby providing evi-
dence that the metalog system offers a new vehicle
for data and distribution research. The second exam-
ple, decision analysis, shows an actual decision that
would have been made wrongly if the decision mak-
ers had relied on three-branch discrete approxima-
tions (as commonly used in decision analysis) instead
of metalog-based continuous representations. As part
of the decision analysis application, we develop sim-
plified expressions in terms of assessed quantiles for
the metalog system for the special case of n= 3.

6.1. Application 1: Data and Distribution Research
Our data and distributions research examples are
based on real data from the disparate fields of
fish biology and hydrology. Both show how meta-
log flexibility can aid data and distribution research
by generating insight that might not otherwise
emerge.

6.1.1. Fish Biology. Metalog distributions can
mold themselves to the data with fewer unexamined
shape constraints compared to other distributions. To
illustrate, we consider the weight distribution of steel-
head trout in the Babine River in northern British
Columbia. A fly fishing lodge on that river has kept
meticulous records of the weight of every fish landed
by clients or staff over many years. Specifically, dur-
ing 2006–2010, 3,474 steelhead trout were caught
and released. The recorded data for the weights of
these fish are plotted in Figure 10. This plot also
shows two alternative distributions that could be
used to represent that data. One is the log-normal, a
shape that is representative of multiple other one-to-
two-shape-parameter distributions (such as the log-
logistic, gamma, log Pearson 3, and F ) that might

typically be used in such a case. The other is a the
10-term log metalog M

log
10 with bl = 0. Note that both

CDFs appear to reasonably approximate the CDF
data. However, the corresponding log metalog PDF
shows a clear bimodal pattern in the data, which the
log-normal and other similar distributions lack the
flexibility to represent.

The population of steelhead in the river when this
lodge is open, during the fall of each year, consists
of fish that are returning upriver to spawn after hav-
ing lived in salt water. Those fish returning from salt
water to spawn for the first time are called “1-salt”
fish. After spawning, these fish typically return to salt
water, gain additional weight in ocean-rich feeding
grounds, and then come back up the river some years
later to spawn for a second time, becoming “2-salt”
fish. A few very-large steelhead are “3-salt” or “4-salt”
fish. One might reasonably consider that the modes
of the log metalog PDF in Figure 10 may be respec-
tively indicative of the 1-salt and 2-salt fish popula-
tions. Both the relative population sizes and weight
differences between 1-salt and 2-salt fish are unsolved
research questions in fish biology. It is apparent that
the log metalog representation may shed some light
on both questions. More broadly, by telling a more
nuanced story about the data than alternative distri-
butions, the metalog system may open new avenues
for data and distribution research.

6.1.2. Hydrology. When a Type I interpretation of
data is available, it is natural to use a corresponding
Type I distribution. The advantage of this approach
is that it constrains the shape to one consistent with
the Type I model, and relatively few data are needed
to parameterize that model. A disadvantage is that
the data may have been generated by a process that
does not exactly correspond to the assumptions of the
model, and therefore may have a legitimately differ-
ent shape than the model predicts. If Type I shape
constraints go unexamined, erroneous conclusions
might result. In contrast, the flexibility of the metalog
system allows “the data to speak for itself” with fewer
unexamined shape constraints compared to other dis-
tribution families. Thus, it can be compared to various
Type I representations of the same data.

In hydrology, for example, it is common to com-
pute maximum annual river stream flows and gauge
heights for each year as the maximum of the 365 daily
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Figure 10 (Color online) How the Metalog System Can Aid Data and Distribution Research
y
�

y

-

� �

observations for that year. These measures are impor-
tant for decisions such as bridge design, high-water
mitigation, and river regulations. Even though there
is typically autocorrelation among such observations,
one might nevertheless try an extreme value distri-
bution to represent such data given that this distri-
bution has a simple Type I interpretation as the lim-
iting distribution of a large number of independent

and identically distributed samples. In Figure 11, we
consider 95 years (1920–2014) of maximum annual
gauge-height data as reported by the U.S. Geological
Survey for the Williamson River (below its confluence
with the Sprague River) near Chiloquin, Oregon.15

15 This data is available from U.S. Geological Survey website and
also from http://www.metalogdistributions.com.

http://www.metalogdistributions.com
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Figure 11 (Color online) How the Metalog System Can Illuminate Unexamined Shape Constraints
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Comparing log metalog (with bl = 0) and extreme
value representations of the data, we observe that the
CDFs are similar. In addition, the extreme value PDF
shows a shape that would commonly be attributed
to these data, not only by the extreme value distri-
bution, but also by the log-normal, log Pearson 3,
log-logistic, and other distributions commonly used

to represent such data in hydrology. But by mold-
ing itself more closely to the data than possible with
such other distributions, the log metalog PDF tells a
somewhat different story: a lower mode and a “flat
region” of equally likely values above that mode. To a
knowledgeable expert, this deviation of the data from
typically assumed shapes might suggest systematic
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interpretations that would otherwise be masked by
assuming a Type I model that may not appropriately
apply.

6.2. Application 2: Decision Analysis
For decision analysis applications, it is common to use
three assessed quantiles that correspond, for example,
to probabilities of 0.1, 0.5, and 0.9. In this section, we
show how the metalog system simplifies for such spe-
cial cases. Then we apply it within an actual decision
analysis.

6.2.1. SPT Parameterization of theMetalog
System.

Definition 3 (Symmetric-Percentile Triplet).16

Metalog parameters (x1y) are a symmetric-percentile
triplet (SPT) when they can be expressed as y = 4�1

00511 −�5 and x = 4q�, q005, q1−�5 for some � ∈ 4010055
and q� < q005 < q1−�.

This is often the case in decision analysis when,
for example, 10–50–90 quantiles 4q0011 q0051 q0095 are en-
coded from an expert and correspond to the 0.1, 0.5,
and 0.9 probabilities on the CDF. We begin with the
SPT-parameterized metalog distribution (SPT meta-
log) and then extend the results to develop the SPT-
parameterized log and logit metalogs.

Proposition 1 (SPT Metalog Constants). Given
that random variable X is metalog distributed and given
a feasible SPT x = 4q�1 q0051 q1−�5, the metalog constants
a= 4a11 a21 a35 can be expressed directly as

a1 = q0051

a2 =
1
2

[

ln
(

1 −�

�

)]−1

4q1−� − q�51 (16)

a3 =

[

41 − 2�5 ln
(

1 −�

�

)]−1

41 − 2r54q1−� − q�51

where r =
q005 − q�
q1−� − q�

0 (17)

Proof. For m=n= 3, (7) reduces to a=Y−1
3 x. Given

that the second element of y is 0.5, the second row

16 Hadlock and Bickel (2016) defined SPTs to parameterize John-
son quantile-parameterized distributions (J-QPDs). Our definition
of SPT is the same, and we use it to simplify parameterization of
the metalog system for the special case of n = m= 3. See Hadlock
and Bickel (2016) for a J-QPD alternative to the SPT-parameterized
metalog system presented in this section.

of Y3 reduces to (1, 0, 0). Inverting Y3 under this con-
dition, postmultiplying by column vector x, and sub-
stituting in the definition of r in (17) yields the above
expressions. �

The SPT-metalog quantile function and PDF are (6)
and (9), respectively, for the special case of n= 3. The
importance of Proposition 1 is that (7), the expression
for the constants, is greatly simplified. The the meta-
log constants a can be expressed directly in terms of
the quantile assessments (q�, q005, q1−�5. Constant a1 is
simply the median, as is true for all metalog distribu-
tions. Constant a2 is proportional to the q1−�−q� quan-
tile range. For example when �= 001, a2 is 1/42 ln 95=

0023 times the 10–90 quantile range. Constant a3, which
controls skewness, is also proportional to the q1−� − q�
quantile range. We define r to mark the location of
the median within this q1−� − q� range. If the median
is the midpoint of this range, then r =

1
2 , a3 = 0, and

the three-term metalog reduces to a symmetric logistic
distribution. If the median is closer to q�, then r < 1

2 , a3

is positive, and the distribution is right skewed accord-
ingly. If the median is closer to q1−�, then a3 is negative,
and the distribution is left skewed.

There is a feasibility limit as to how much skew-
ness and kurtosis can be represented with an SPT-
parameterized metalog. Since there is a one-to-one
correspondence between a and x in Proposition 1, this
limit is just the “three-term metalog” line segment
shown in Figure 4, and the range of feasible shapes
for SPT metalogs is as shown in Figure 5. Intuitively,
the three-term metalog, whether SPT-parameterized
or more generally, can represent any shape from sym-
metric to roughly the skewness of the exponential
distribution.17 Quantitatively, this limit is determined
in closed form for the SPT metalog by the following
proposition.

Proposition 2 (SPT Metalog Feasibility). Any
given SPT x= 4q�1 q0051 q1−�5 is a feasible parameterization
of the metalog distribution if and only if

k� < r < 1 − k�1 where r =
q005 − q�
q1−� − q�

and k� =
1
2

[

1 − 1066711
(

1
2 −�

)]

0 (18)

17 Note that in Figure 4 the exponential distribution with (�1, �25=

440019005 is very close to the end of the three-term metalog line seg-
ment 440318065. So conceptually we can use the exponential distri-
bution as a close proxy for the three-term metalog skewness limit.
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For 10–50–90 quantiles (�= 001), a close approximation to
this expression is

1
6 ≤ r ≤

5
6 0 (19)

Proof. For n = 3, the feasibility condition (5) re-
duces to

a2

y41 − y5
+ a3

(

y− 005
y41 − y5

+ ln
y

1 − y

)

> 01

for all y ∈ 401150 (20)

Consider three cases: y ∈ 40100551 y = 005, and y ∈

400511005. The feasibility condition is satisfied if and
only if it is satisfied for all three cases. For y = 005,
the second case, (20) reduces to a2 > 01 which is obvi-
ously true by (16) since, by definition, q� < q1−� and
0 < �< 0050 Given a2 > 0, then, for the first case, (20)
can be expressed as

a3

a2C4y5
< 11 for all y ∈ 40100551

where C4y5= −
1

y− 005 + y41 − y5 ln4y/41 − y55
0

Since C4y5 > 0 everywhere in this interval, the feasi-
bility condition for this case becomes

a3

a2
< k01 where k0 = min

y∈4010055
C4y5= 10667110

Similarly, the feasibility condition for the third case is

a3

a2
> k11 where k1 = max

y∈400511005
C4y5= −1066711 = −k00

Thus, (18) is satisfied if and only if −k0 < a3/a2 < k0.
Substituting (16) and (17) for a2 and a3 in this expres-
sion, defining k� =

1
2 61 − 10667114 1

2 − �57, and sim-
plifying yields (18). Applying (18) for � = 001 yields
00166578 ≤ r ≤ 00833442, of which (19) is a close
approximation. �

The importance of Proposition 2 is that the fea-
sibility of the SPT x = 4q�1 q0051 q1−�5 can readily be
checked prior to any further calculations. If (18)
or (19) is satisfied, then x is feasible, as it will always
be over the range of shapes shown in Figure 5. If x
is not feasible, then adding one or more data points
(n=m≥ 4) would provide greater flexibility, as shown
in Figure 4.

Proposition 3 (SPT Log Metalog). Given that
ln4x − bl5 is metalog distributed and given a feasible SPT

x= 4q�1 q501 q�5 with known lower bound bl, the log meta-
log constants a= 4a11 a21 a35 can be expressed directly as

a1 = ln4�00551

a2 =
1
2

[

ln
1 −�

�

]−1

ln
�1−�

��

1

a3 =

[

41 − 2�5 ln
1 −�

�

]−1

ln
�1−���

�2
005

1

where �� = q� − bl, �005 = q005 − bl, �1−� = q1−� − bl. More-
over, x is feasible if and only if

bl +�1−k�
� �

k�
1−� < q005 < bl +�k�

� �
1−k�
1−� 1

where k� is as in (18).

Proof. For the log metalog, ln4x − bl5 is meta-
log distributed. In Proposition 1, substitute ln4��5,
ln4�0055, and ln4�1−�5, for q�, q005, and q1−�, respectively.
The above expressions for the log metalog constants
follow from algebraic simplification. In (18), substitute
ln4��5, ln4q005 − bl5, and ln4�1−�5 for q�, q005, and q1−�,
respectively. The above expression for the log metalog
feasibility condition follows from solving the result-
ing equation for q005. �

The SPT-log-metalog quantile function and PDF are
(11) and (13), respectively, for the special case of n= 3.
The importance of Proposition 3 is that (12) and (5), the
expressions for constants and feasibility, respectively,
are greatly simplified. The log metalog constants and
feasibility condition can be expressed directly in terms
of the quantile assessments 4q�1 q0051 q1−�5 and lower
bound bl. The feasible range of flexibility for the log
metalog parameterized by an SPT is same as the
“three-term semibounded metalog” region in Figure 6,
which also extends beyond the plot indefinitely down
and to the right. Thus, the shape flexibility of an SPT-
parameterized log metalog is inclusive of that of the
SPT-parameterized metalog, but includes significant
additional area as well.

Proposition 4 (SPT Logit Metalog). Given that
ln44x− bl5/4bu − x55 is metalog distributed and given a
feasible SPT x = 4q�1 q501 q1−�5 with known lower and
upper bounds bl and bu, the logit metalog constants a =

4a11 a21 a35 can be expressed directly as

a1 = ln4�00551

a2 =
1
2

[

ln
1 −�

�

]−1

ln
�1−�

��

1
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a3 =

[

(

1 − 2�5 ln
1 −�

�

]−1

ln
�1−���

�2
005

1

where

��=
q�−bl
bu−q�

1 �005 =
q005 −bl
bu−q005

1 �1−�=
q1−�−bl
bu−q1−�

0

Moreover, x is feasible if and only if

bl + bu�
1−k�
� �

k�
1−�

1 +�
1−k�
� �

k�
1−�

< q005 <
bl + bu�

k�
� �

1−k�
1−�

1 +�
k�
� �

1−k�
1−�

1

where k� is as in (18).

Proof. For the logit metalog, z = ln44x − bl5/
4bu − x55 is metalog distributed. In Proposition 1, sub-
stitute ln4��5, ln4�505, and ln4�1−�5 for q�, q005, and
q1−�, respectively. The resulting equations are identical
those in Proposition 3, so the logit metalog constants
follow from the same algebraic simplification as in
the proof of Proposition 3. To prove the logit metalog
feasibility condition, substitute ln4��5, ln44q005 − bl5/
4bu − q0055, and ln4�1−�5 for q�, q005, and q1−� in (18).
The above logit metalog feasibility condition follows
from solving the resulting expression for q005. �

The SPT-logit-metalog quantile function and PDF
are (14) and (15), respectively, for the special case of
n= 3. The importance of Proposition 4 is that (12)
and (5), the expressions for constants and feasibility,
respectively, are greatly simplified. The logit metalog
constants and feasibility condition can be expressed
directly in terms of the quantile assessments (q�, q005,
q1−�5 and lower and upper bounds bl and bu. The
feasible range of flexibility for the SPT-parameterized
logit metalog is same as the “three-term bounded
metalog” region in Figure 7, which also extends
beyond the plot indefinitely down and to the right.
Comparing the feasible “three-term” ranges in Fig-
ures 4, 6, and 7, it is apparent that the shape flexibility
of the SPT-parameterized logit metalog is far greater
than that of the SPT-parameterized metalog and log
metalog distributions.

6.2.2. Bidding Decision Example. As one illustra-
tion of the value of SPT parameterization of the met-
alog family of distributions, we offer an example of
an actual decision analysis in which a wrong deci-
sion would have been made if the decision makers
had relied on a commonly used three-branch discrete
representation of continuous uncertainties instead of
a metalog-system continuous representation.

The decision was how much to bid for a portfo-
lio of 259 troubled real estate assets, which a finan-
cial institution had offered for sale via public auction.
These assets were of different geographies, sizes, and
types, including single family, multifamily, commer-
cial, and land. To varying degrees, the value of each
asset involved considerable uncertainty and complex-
ity concerning current and future real estate values,
occupancy and leases, potential tenant negotiations,
local regulations, and, in some cases, bankruptcy or
other litigation.

To help determine how much to bid for the port-
folio and how one might monetize its various assets,
a potential bidder wished to see a probability distri-
bution over the value of the portfolio, which would
be the sum of the values of the 259 individual assets.
So he engaged a team of experts to assess the value
of each asset. Their assignment included visiting each
property, discussing comparables with local real estate
agents and other knowledgeable parties, and under-
taking independent research concerning any issues
that would affect that asset’s current or future value.
As an overall summary of their conclusions, the poten-
tial bidder requested a probabilistic range of low,
median, and high scenarios for each asset. For each
scenario, the team assessed a projected cash flow over
time and translated this cash flow into a net present
value (NPV). The low scenario was defined as the
NPV such that, from the experts’ perspective, there
was a 10% chance that the ultimate realized NPV
would be lower than this amount. The high NPV was
defined such that there was a 90% chance that the ulti-
mate realized NPV would be lower than this amount
and a 10% chance that it would exceed it. The median
scenario was defined such that it was equally likely
that the actual realized NPV would be higher or lower
than this amount. The expert’s analyses and assess-
ments resulted in the range of values for each asset as
shown in Table 9.

It was apparent from this data that some assets were
worth far more than others. Some asset distributions
were narrow, while others were wide. Some asset dis-
tributions were symmetric, while others were skewed
left and still others were skewed right. In addition,
while some of the asset-level uncertainty was proba-
bilistically independent of (irrelevant to; see Howard
and Abbas 2015) that of other assets, the team judged
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that there was a degree of positive correlation among
these assets due to their common dependence on the
future economy and, in particular, on the future health
of global and local real estate markets.

To calculate a probability distribution over the
value of the portfolio, the team used a modified form
of Monte Carlo simulation in which they had induced
what they believed was an appropriate level of posi-
tive correlation across assets. For many of the assets,
the team judged the correlation coefficient with the
market to be about 80%. For other assets, especially
those in litigation, the team believed the correlation
with the market to be negligible. The value of the
portfolio for each simulation trial was the sum of the
(appropriately correlated with market) simulated val-
ues for each asset for that trial.

When performing the simulation, the team initially
performed a discrete simulation, using only the discrete
values in Table 9 for each asset. They followed a
commonly used decision analysis approach of assign-
ing probabilities of 30%, 40%, and 30%, respectively,
to the low, median, and high discrete scenarios for
each asset (see Bickel et al. 2011) and summing the
results across assets for each simulation trial. Doing
this for 1,000 simulation trials resulted in the CDF
data labeled “discrete simulation data” in Figure 12.
To gain further insight into this distribution, they

Figure 12 (Color online) Cumulative Distribution Functions Over Portfolio Value
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Table 9 Range of Uncertainty in Asset Value ($000s)

10% 50% 90%
Asset Probability that realized value is less than …

1 $181150 $211133 $221625
2 $101465 $111362 $121408
3 $151781 $161908 $181260
4 $41234 $41422 $41610
5 $21629 $21979 $31295
6 $131945 $141875 $161176
0
0
0

0
0
0

0
0
0

0
0
0

259 $31500 $41000 $41500
Total $1851348

calculated the corresponding metalog distribution M5

parameterized by these data and plotted the results.
The results are labeled “discrete simulation metalog”
in Figures 12 and 13.

Considering Figure 13, the team felt that the discrete
simulation tails were too narrow—even though this
simulation hadtaken correlation intoaccount. While the
median portfolio value of about $185,000,000 seemed
to make sense, the near-zero probability that realized
portfolio value would be less than $170,000,000 did
not.Theyfelt,basedontheirexperience, that the lowend
of the distribution should be lower. Similarly, they felt
that the high end should be higher.

The team then ran the same simulation using meta-
log (continuous) representations of the data in Table 9.
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Figure 13 (Color online) Probability Density Functions Over Portfolio Value

Figure 14 (Color online) Metalog Distribution for Asset 1

M

Using the SPT assessments in Table 9, the team param-
eterized the three-term metalog accordingly for each
asset. Figure 14 shows the result of this calculation for
Asset 1 in Table 9. When reviewing such asset-level
distributions prior to simulation, they noted that the
10–50–90 quantiles for each distribution corresponded
exactly to the 10–50–90 value assessments in Table 9,
and that these distributions appeared to have appro-
priate right or left skewness. They further noted that
the low, median, and high values appeared reasonable.
Intuitively, they felt these asset-level continuous distri-
butions were a more accurate representation of asset-
level uncertainty than the three discrete scenarios.

They further observed that none of the 259 assessed
10–50–90 ranges violated feasibility conditions in
Proposition 2. Rerunning the (similarly correlated)

portfolio simulation based on continuous (meta-
log represented) asset-level uncertainties yielded the
“continuous simulation data” shown in Figure 12
and the corresponding “continuous simulation meta-
log” in Figures 12 and 13. The continuous simulation
showed wider tails and a narrower midrange. The
lower end of the distribution visibly extended below
$160,000,000, which made sense to the team.

Similarly, the high end now extending above
$210,000,000 also made sense. After further reflection
and analysis, the team concluded that the continuous
simulation was a more accurate and authentic rep-
resentation of the uncertainty in portfolio value than
the discrete simulation. The discrete simulation, they
reasoned, arbitrarily cut off the tails of the asset-level
distributions prior to simulation (no values outside
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the low-high range were considered), so it was not
surprising that the sum over 259 assets had resulted
in artificially short tails as well.

Based on clarity and confidence gained through
such analysis, the decision makers chose to submit a
bid for this portfolio of assets and subsequently won
the auction. Had they relied only on the discrete rep-
resentation in Figures 12 and 13, they would have
overbid. The portfolio value ultimately realized sev-
eral years later was about $180,000,000—just slightly
less than their prior median.

To date, professional decision analysts have used
metalog distributions to represent thousands of uncer-
tainties over dozens of applications across many fields,
including life science asset valuations, loan asset val-
uations, real estate asset valuations, environmental
studies of fish migration and river stream flows, and
a wide range of portfolios of such items. Like the
team valuing the portfolio of troubled real estate
assets in the above example, such teams have gener-
ally concluded that treating continuous uncertainties
as continuous and discrete uncertainties as discrete
yields more authentic probabilistic results than dis-
cretizing all uncertainties from the outset. The meta-
log system enables practitioners to do this easily and
conveniently.

6.3. Distribution Selection within the
Metalog System

Given input data 4x1y5 that one wishes to repre-
sent with a continuous probability distribution, which
metalog should one select, and how many terms
should one use for that selection? As with any dis-
tribution selection that is not purely Type 1 driven,
this is ultimately a matter of judgment. We now offer
several guidelines and tools to help aid this judgment.

With respect to choosing among unbounded, semi-
bounded, and bounded distributions, the traditional
basis of choice for the Pearson (1895, 1901, 1916),
Johnson (1949), and Tadikamalla and Johnson (1982)
systems is to match third and fourth central moments
of the data with a corresponding distribution from
Figure 1. However, given a moments-based selec-
tion within the Pearson and Johnson systems, this
approach has the disadvantage that it offers no choice
of boundedness. In contrast, as shown in Figures 4–7,
the metalog family offers a wide range of flexibility for

each of its unbounded, semibounded, and bounded
options. So as a starting point, per Table 1, we sug-
gest selecting the metalog, log metalog, or logit meta-
log according to whether the distribution of interest is
naturally unbounded, semibounded, or bounded.

Additional considerations include closed-form
moments and flexibility. While all three options are
highly flexible, the logit metalog is the most flexible
for any given number of terms. However, moments of
the metalog are available in closed form, as detailed
in Section 3.4, whereas moments of the log and logit
metalogs must be calculated numerically. Thus, if
maximizing flexibility for a given number of terms is
critical, one may opt for the logit metalog. If the avail-
ability of closed-form moments is critical, one may
opt for the metalog.

How many terms to use depends significantly
on purpose and context. For example, in decision
analysis applications with three assessed data points
(m= 3), it is natural to use three terms (n = 3). In
this case, for any feasible data, the metalog CDF will
pass through these data points exactly as illustrated in
Figure 14. More generally, the metalog distributions
will pass through the data exactly whenever n = m
and the data is feasible, so it makes sense to start with
n=m when this result is desired.

In the case of tens or even thousands of data points
(e.g., of empirical- or simulation-frequency data), an
exact fit is generally neither desired nor practical. In
such cases, one may wish to use (A) relatively few
terms (e.g., n = 3–6) if a smooth representation is
desired, (B) a larger number of terms (e.g., n = 7–15)
if one is engaged in data or distribution research, or
(C) the n that maximizes some closeness-of-fit crite-
rion such as K–S distance. In the case of (B) or (C), one
must take care not to overfit18 the data, as is potentially
possible with any linear least squares application with
a variable number of terms.

To aid such considerations, we have found the “met-
alog panel” to be a useful tool. As shown in Figures 15
and 16, the metalog panel arrays density functions for
a range of n for a given set of data parameters (x1y50

Figure 15 shows the array of log metalog density
functions for n = 2 to n = 16 that correspond to fish

18 Among others, Hawkins (2004) and Draper and Smith (1998)
provide perspectives on overfitting and rules of thumb for dealing
with it.
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Figure 15 (Color online) Metalog Panel for Fish Biology Data

n = 2 n = 3 n = 4 n = 5 n = 6

n = 7 n = 8 n = 9 n = 10 n = 11

n = 12 n = 13 n = 14 n = 15 n = 16

Figure 16 (Color online) Metalog Panel for Hydrology Data

n = 2 n = 3 n = 4 n = 5 n = 6

n = 7 n = 8 n = 9 n = 10 n = 11

n = 12 n = 13 n = 14 n = 15 n = 16

biology data in Figure 10. Figure 16 is a similar repre-
sentation for the hydrology data in Figure 11. In both
Figures 15 and 16, it is evident how the log metalog
increasingly molds itself to the shape of the data and
eventually stabilizes its shape as n increases. Blank
cells in these figures correspond to the data being
infeasible for that choice of n.

From a Bayesian perspective, the choice of n ulti-
mately corresponds to a declaration of “yes, that’s
what I mean” by a decision maker or expert; that is,

the resulting distribution authentically represents his
beliefs.

7. Conclusions
This paper introduces the metalog distributions, a sys-
tem of continuous univariate probability distributions
designed for flexibility, simplicity, and ease/speed of
use in practice. While the metalog system offers un-
bounded, semibounded, and bounded distributions
that broadly achieve these goals and that compare
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favorably with previous systems, it also suggests sev-
eral areas for further research.

First, one can envision various improvements to the
metalog system. These include, for example, charac-
terizing the full range of metalog-system flexibility,
including for five or more terms in the �1–�2 plane
and for the ability to match fifth and higher-order
moments. In addition, it might be useful to extend
to four or more terms an expression of the constants
and feasibility conditions that we developed for up to
three terms in Section 6.2.1.

Second, as suggested in Section 3.2, other “meta”
distributions can be developed by applying the
methodology of Section 3.1 to other base distributions
such as the normal, Gumbel, and exponential. While
this research appears to be straightforward, it has not
been done yet, and it may well yield new systems of
quantile-parameterized distributions that have certain
advantages relative to the metalog.

Third, and more broadly, there is a need for new
distribution systems that may result from a differ-
ent combination of choices or the addition of new
choices to Table 1. These might include quantile-
parameterized systems without feasibility conditions,
with additional flexibility for given levels of feasibil-
ity, or with flexibility to represent infinite-moments
distributions like the Cauchy.

Future research contributions notwithstanding, we
believe the metalog system as presented in this paper
is ready for use in practice19—for any situation in
which CDF data is known and a flexible, simple,
and easy-to-use continuous probability distribution is
needed to represent that data.
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