
Page 0 © 2016 Keelin Reeds Partners. All rights reserved.

The Metalog Distributions
Probability Distributions to Represent Any Continuous Uncertainty

Invited Lecture at Stanford University

Department of Management Science and Engineering 

Tom Keelin

February 28, 2017

Keelin Reeds Partners
770 Menlo Ave., Ste 230
Menlo Park, CA 94025

650.465.4800 phone
tomk@keelinreeds.com
www.keelinreeds.com



Page 1 © 2016 Keelin Reeds Partners. All rights reserved.

• Historical context

• Equations, parameters, and properties

• Theoretical development

• Shape flexibility compared to prior distributions

• Applications

- Fish biology

- Hydrology

- Decision analysis

• Multivariate metalogs

- Assessment protocol

- Real estate portfolio 

• Conclusions

Metalog Topics



Page 2 © 2016 Keelin Reeds Partners. All rights reserved.

A Short History of Continuous Probability Distributions
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What did Pearson do?
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Strengths and Shortcomings of the Pearson System

Shortcomings:

• Limited to 2 shape parameters 

• Given a point (β1, β2), Pearson 

and system offers

� zero choice of 

boundedness

� zero ability to match 5th or 

higher-order moments

• A dozen functional forms, some of 

which are duplicative, with 

incomplete guidance for which to 

use.

• Parameter estimation can require 

non-linear optimization (with 

situation-specific manual 

intervention).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10

logistic

normal

uniform

t

df:

∞
15

7

6

5

4 exponential

Gumbel

triangular

F

Pearson

semi-bounded

Pearson

unbounded

(Pearson 4, t)

Pearson

bounded (beta)

β1

β
2

(k
u
rt
o

si
s
)

(skewness^2)

Flexibility: Can match any combination of skewness and kurtosis

(standardized skewness^2)

(s
ta

n
d
a
rd

iz
e
d
 k

u
rt

o
si

s)



Page 5 © 2016 Keelin Reeds Partners. All rights reserved.

A Short History of Continuous Probability Distributions

1700 1800 21001900 2000

state of 
information
(including 
frequency)

interpretation
of probability

frequency only
(classical statistics)

normal
distribution 
published

(DeMoivre,1756)

dozens of distributions 
invented, thousands of pages 
written (including Johnson, 1959; 

Johnson et. al. 1970, 1982, 1994)

Year

Decision analysis 
practice evolves 

predominantly with 
discrete methods …
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unsuccessful 

attempts to use 
frequency-

distributions for 
state-of-information 

needs …

foundation laid: 
continuous 

probabilities can 
legitimately take 

on any shape
(Bayes,1763. Further 
developed by Laplace 

late 1700’s.)

normal 
distribution 
modified for 
skewness/

kurtosis 
flexibility
(Edgeworth 
1896, 1907. 

Pearson,
1895,1901,

1916)
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• Early days at Stanford

₋ “It’s not easy to invent a new probability distribution.”

• Decision analysis (DA) with discrete methods -- first 25 years of 
professional practice

₋ Continuous distributions were desirable but largely impractical. 

• DA with simulation – next 15 years. Continuous distributions 

₋ Computationally tractable (in a few cases)

₋ Otherwise impractical (encoding, parameter estimation, lack of 
flexibility)

• 2009 light-bulb moment: why not invent continuous distributions that meet 
the needs of modern (“state-of-information”) probability applications?

₋ White-board sketches (starting with how to add skewness to the 
Normal distribution and parameterize it with 10/50/90 assessments) 
led to …

Personal Journey to a New Family of Probability Distributions
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A Short History of Continuous Probability Distributions

1700 1800 21001900 2000

state of 
information
(including 
frequency)
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normal
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2016, “The Metalog 
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Parameterized 
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Logistic Distribution
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What’s this?

… varying skewness parameter a3

… varying kurtosis parameter a4

M3(y)     “3-term metalog distribution”

add a 4th term …

M4(y)     “4-term                                  
metalog 
distribution”

… generalizes to any number of terms Mn(y)

logistic distribution skewness term

kurtosis term
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Metalog constants ai are determined linearly from CDF data.

case 1

case 2 works either way

Feasibility of (xxxx,yyyy) :

*

invertibility guaranteed

except in pathological cases

Mn(y) is strictly increasing.  Equivalently, density function mn(y) is positive over 0<y<1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

y

x

Cumulative Probability

(x1,y1)

(x2,y2)

(x3,y3)

(xm,ym)

…

quantiles 
(aka fractiles, 
percentiles) 



Page 12 © 2016 Keelin Reeds Partners. All rights reserved.

Metalog moments are closed-form polynomials of the ai’s.

For example, for the 4-term metalog

More generally, the kth central moment of the n-term metalog 

is simply a kth-order polynomial of the ai’s.
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How about simple and flexible semi-bounded 

or bounded distributions?

Name Interpretation CDF (quantile function) Condition

metalog
(unbounded)

generalized 
logistic 
distribution

�� � = 	
 + 	� ln �
1 − �

+ 	� � − 0.5 ln �
1 − � +	…

0 < � < 1

semi-bounded 
metalog

log(�)
is metalog 
distributed

����� � =  � + !"# $
=  �

0 < � < 1
� = 0

(given lower bound  �)
bounded 
metalog

logit(�)	= 

ln	('()*)+(')
is metalog 
distributed

�����,- � =  � +  .!"# $
1 + !"# $

=  �=  .

0 < � < 1
� = 0
� = 1

(given lower and upper
bounds  � and  .)
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Types of Continuous Probability Distributions

Basis of 

Legitimacy

Criteria Examples

Type I Derived from 

an underlying 

probability 

model

Distribution 

reflects the 

model

normal

exponential

…

Type II Matches 

specific types 

of empirical 

data

Distribution 

matches data

generalized logit-normal (Mead, 1965)

skewed generalized t distribution 

(Theodossiou,1994)

… (dozens of others)

Type III Matches most 

any set of 

empirical (or 

assessed) data

Flexibility

Simplicity

Ease of use

Pearson distributions (1895,1901,1916)

Johnson distributions (1949,1982)

…

Quantile parameterized distributions 

(Keelin and Powley, 2011)

Metalog distributions (this research)
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Engineering a new probability distribution – strategy table

normal 

(Edgeworth 1896, 1907; 

Pearson 1895,1901,1916; 

Charlier 1928; Johnson 

1949)

probability density 

function (PDF) 

(Edgeworth 1896, 1907; 

Pearson 1895,1901,1916; 

Charlier 1928; )

parameter 

addition 

(Mead, 1965; 

Theodossiou,1994)

ability to match 

moments

(Pearson 1895,1901,1916; 

Johnson 1949; Tadikamalla 

and Johnson 1982) 

method of 

moments 

(Pearson 1895,1901,1916)

logistic 

(Tadikamalla and Johnson 

1982; Balakrishnan, 1992)

cumulative 

distribution 

function (CDF) 

(Burr, 1942)

parameter 

substitution 

(Pearson 1895,1901,1916)

match natural 

bounds

maximum 

likelihood 

(Fisher 1932)

student t 

(McDonald and Newey, 

1988; Theodossiou,1994)

quantile function 

(inverse CDF)

(Keelin and Powley, 2011)

transformation

(Johnson 1949; Tadikamalla

and Johnson 1982; Hadlock 

and Bickel, tbd)

… probability-

weighted- and L-

moments

(Greenwood, et. al. 1979; 

Hosking, 1990)

… characteristic 

function

(Ord 1972)

series expansion 

(Edgeworth 1896, 1907; 

Charlier 1928)

quantile 

parameterized

(Keelin and Powley, 2011. 

Hadlock and Bickel, tbd.)

Base 

Distribution

Form Selected 

for Modification

Modification 

Method

Distribution 

Selection

Parameter 

Estimation
Pearson

metalog
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The Metalog: A Generalized Logistic Distribution

=

quantile 
function: x

series
expansion

where:

Since µµµµ by itself is a power series in (y-0.5)k with unlimited terms, Taylor’s Theorem guarantees that 
the metalog can locally approximate any sufficiently smooth distribution arbitrarily closely.

thus: x  =

pdf: y’
-1

where: = number of series terms in use. ‘s are constants.

[ ]
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Other practical “meta-distributions” can be formed similarly.

Unexplored meta-distributions may offer significant additional value.

Name Quantile function 
linear in its 
parameters

QPD + 
easy to 

simulate

Flexibility --

(ββββ1, ββββ2) plot

Properties 

(feasibility, 
moments, 

transforms, 

etc.)

Advantages 

relative to 
other 

distributions

Prior research

metalog x = µ	+	/	01( $

($) � � � �

“The Metalog 
Distributions”, 
Keelin, 2016

meta-normal x = µ + σ Φ−1(�) � (for 4 terms) (for 4 terms)

“Quantile-
Parameterized 

Distributions”, Keelin 
and Powley, 2011

meta-
exponential

x = − (1/λ) 01(1 − �)
�

meta-
Gumbel

x = µ − β 01	(−01	(�))
�

meta-
Cauchy

x = �2− γ tan	(π(y	- 0.5)) �

others … ? ? ?

Meta-distribution: a generalization of a base distribution created by substituting 
for one or more of its parameters an unlimited number of shape parameters

(unexplored)

(unexplored)
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How much added flexibility does a meta-distribution provide?
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Flexibility Comparison: Metalog vs. Pearson Distributions

Other Relative Strengths:

• Unlimited shape parameters

• For many areas of (β1, β2), the 

metalog offers

� choice of boundedness

� ability to match 5th and 

higher-order moments

• 3 functional forms (one each for 

unbounded, semi-bounded, and 

bounded)

• Linear quantile parameterization

Flexibility: Metalog flexibility expands with number of terms
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Example: Bounded Metalog Shape Flexibility

Caveat:

• Certain very extreme distributions 

(e.g. Cauchy with infinite moments) 

require transformation in order to 

enable a good metalog 

representation.
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Metalogs can effectively represent a wide range of 

traditional distributions.

Source: triangular ( 456! = 20,  0 = 10,  9 = 50)

pdf:            y’  =

metalog

5 terms

Source: extreme value (: = 100, ; = 20, !<	 = −0.5)

metalog

5 terms

Source: exponential (λ = 0.5)

metalog

5 terms

metalog

5 terms

Source: beta ( > = 0.8, @ = 0.9,  0 = 10,  B = 50)
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Metalog representations are increasingly accurate with 

increased numbers of terms.
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Application 1: Fish Biology

By enabling the data to “speak for itself,” metalogs can transform 

data into knowledge.

Steelhead Trout Weight (lbs) 

3,474 catch-and-release fish records 2010-
2014. Babine River, British Columbia. 

age (years)0 10

river

ocean

…

“1 salt” “2 salt”

Steelhead Life Cycle

Silver Hilton Steelhead Lodge

“1 salt” vs. “2 salt” fish-biology research questions:
fish weights (relative and absolute)?                 
relative population sizes?
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Application 1: Fish Biology

By enabling the data to “speak for itself,” metalogs can 

transform data into knowledge.

Steelhead Trout Weight (lbs) 

3,474 catch-and-release fish records 2010-
2014. Babine River, British Columbia. 

10-terms2-salt?

1-salt?
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Metalog Panel for Fish Biology Data (n = 2-16 terms)

Metalog family molds itself to the data -- potentially telling a more 

nuanced story than previous Type III families.

Application 1: Fish Biology

b_

c_

n=2 n=3 n=4 n=5 n=6

n=7 n=8 n=9 n=10 n=11

n=12 n=13 n=14 n=15 n=16
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Application 2: Hydrology

Maximum-annual-river-gauge-height probability distribution? 
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Maximum Annual River Gauge Height (ft) 

Williamson River (below the Sprague River), near Chiloquin, 
Oregon.  USGS data 1920-2014.

Application 2: Hydrology

Metalogs enable examination of whether the “shape of the data” is 

consistent with a given Type I model.

10-terms



Page 31 © 2016 Keelin Reeds Partners. All rights reserved.

• Historical context

• Equations, parameters, and properties

• Theoretical development

• Shape flexibility compared to prior distributions

• Applications

- Fish biology

- Hydrology

- Decision analysis

• Multivariate metalogs

- Assessment protocol

- Real estate portfolio 

• Conclusions

Metalog Topics



Page 32 © 2016 Keelin Reeds Partners. All rights reserved.

In 2010, my partners and I faced a major decision: how much to bid 

in public auction for a pool of 1,456 loans from 16 failed banks.

Application 3: Bidding decision analysis

• Total number  of loans – 1,456 

– Unpaid Balance (UPB) -
$313,848,054

• 1st Liens – 855

– UPB - $ 261,983,734

– Performing – 435 

– Non-Performing – 422

• 2nd Liens – 605

– UPB  - $51,864,320

– Performing – 462

– Non Performing – 143

• More than 200 cross-collateralized loans

16 Failed Banks FDIC Pool 2010-2
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Exit proceeds was the only critical uncertainty, but it was 

very critical.

Application 3: Bidding decision analysis

investors
lose

investors
profit

at $110 mm bid

Challenge: How to develop the probability distribution over exit proceeds.
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We proceeded much as any good decision analyst would do …

Application 3: Bidding decision analysis

Simulation was the tool of choice.

259 discrete uncertainties
(correlated with market)

30%

40%

30%
16.2

13.9

14.9

1,456 loans � 259 “asset” assessments

� …

portfolio exit proceeds densityportfolio exit proceeds cumulative

investor
losses

investor
profits

investor
losses

investor
profits
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Redoing the same analysis with continuous uncertainties led us 

to a different and better decision.

Application 3: Bidding decision analysis

Discrete analysis artificially cut off the tails. If we had believed that analysis, 
we would have made a wrong decision.

259 continuous uncertainties
(correlated with market)1,456 loans � 259 “asset” assessments

�

portfolio exit proceeds densityportfolio exit proceeds cumulative
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Separately, metalogs can aid expert assessments by 

providing real-time representations and feedback. 
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This works for any number of data parameters (including inconsistent ones).

Metalogs enable virtually any shape and can provide real-time feedback as each point is added.

Application 3: Decision Analysis
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A. Decompose with conditional conditional probability

- Easy in concept: {x,z|&} = {z|x,&} {x|&}

- Traditionally difficult in practice:

- Picking marginal and conditional distributions with sufficient shape and 
bounds flexibility

- Conceptualizing how parameters of {z|x,&}, such as standard deviation, 
skewness, α, β, etc., vary as a function of x for all x.

Approaches to Characterizing Continuous Multivariate Distributions

Multivariate metalogs

metalogs have 
practically unlimited
shape and bounds 

flexibility …

B.   Couple marginal distributions (copulas) with 
correlation coefficients

- Couple marginal distributions directly (Winkler, et. al, Copulas in Decision Analysis, Decision 

Analysis, …)

- Simulation of marginal distributions from correlated uniform distributions 
(correlation accomplished by computing inverse CDF’s from the bivariate 
normal with a given correlation coefficient) 

- Difficult in practice: correlation coefficient assessments are

- A blunt instrument, not clearly interpretable

- All but impossible for three or more mutually relevant uncertainties

bidding 
decision 
example
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Let’s consider the joint distribution over the future sales prices of 

a real estate portfolio.  (I)

Multivariate metalogs

{Shotwell, 24th, Mission, Ashbury, Peters, Minna, Haight | &} 

Portfolio manager: “Many decisions (sell now vs. hold vs. exchange) depend 
critically on the joint distribution over 2023 sales prices of our properties.”

Assessment Question Response

1. How would you think about our range of uncertainty over 
2023 selling prices for Shotwell?

It depends on what happens at 
Shotwell and overall San Francisco 
market conditions.

2. Assuming your median forecast for 2023 market conditions, 
what’s your 10%, 50%, 90% range for Shotwell selling price?

$4.9 mm, $5.3 mm, $5.8 mm

3. Same question for the other six properties … …

4. Given median market conditions in 2023, how, if at all, would 
knowing that one property sold for a high or low price affect your 
assessments for the other properties.

Not at all.

5. What’s your 10%, 50%, 90% range over 2023 market relative 
to your forecast?

-20%, 0, +20%

6. If you knew that 2023 market would be x%, how, if at all, 
would you adjust your answers to Question 2 for Shotwell?

I’d multiply all three by k = (1+x%).

7. Would you do this also for the other six properties? Yes, for all except Haight.

8. What’s special about Haight and how would you adjust its 
assessments for various market outcomes?

Haight has less downside in bad 
markets.  If x% < 0, I’d multiply by k = 
(1+x%/2) and by k= (1+x%) otherwise.
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Multivariate metalogs

3-term metalog parameters

sale price uncertainty conditional on market

market Shotwell 24th Mission Ashbury Peters Minna Haight

bounds u u u u u u u u

y1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05

y2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

y3 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.95

x1 -20% 4.9*k 3.9*k 3.9*k 5.0*k 5.0*k 7.2*k 23.0*k

x2 0% 5.3*k 4.3*k 4.3*k 5.6*k 5.3*k 7.6*k 30.0*k

x3 20% 5.8*k 4.8*k 4.8*k 6.2*k 5.6*k 8.0*k 35.0*k

where k = (1+market) for all cases except that  k = (1+market/2) for Haight when market<0

y quantiles implied quantiles for median market (market = 0%)

0.01 -42 4.5 3.5 3.5 4.3 4.7 6.8 18.9

0.10 -20 4.9 3.9 3.9 5.0 5.0 7.2 24.9

0.50 0 5.3 4.3 4.3 5.6 5.3 7.6 30.0

0.90 20 5.8 4.8 4.8 6.2 5.6 8.0 33.8

0.99 42 6.4 5.4 5.4 6.9 5.9 8.4 37.7

metalog parameters 
change with market 

outcome

implied quantiles 
reviewed and 

validated

The joint distribution over market and the seven properties is now fully determined.

Let’s consider the joint distribution over the future sales prices of 

a real estate portfolio.  (II)
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The joint distribution may be expressed either analytically 

or as an Outcomes Table.

Multivariate metalogs

Analytic Expression 

= M3
-1(market | x = (-20%,0%,20%), y = (.1,.5,.9),&)

* ΠΠΠΠproperties M3
-1(property| xproperty*k, yproperty, &) 

= m3
-1(market | x = (-20%,0%,20%), y = (.1,.5,.9),&)

* ΠΠΠΠproperties m3
-1(property| xproperty*k, yproperty, &)

where M3 and m3 are well-defined, fully-parameterized, 

continuous functions in closed form.

joint

cumulative

joint

density

{market, Shotwell, 24th, Mission, Ashbury, Peters, Minna, Haight | &}

Difficulties: many questions of interest are difficult or intractable

- marginals: {Shotwell | &} = C {Shotwell | market, &} {market
D
D | &}

- portfolio: sum of mutually relevant sales prices over the properties

EEE…EEEF5G1<	6!/1G<�
D

D

D

D

D

D
														

D

D

D

D

D

D
- conditionals: portfolio conditional on market
- intuitive continuous representations and closed-forms for all the 

above

Outcomes Table
Aka: realizations array, SLURP (Sam Savage) 

Outcomes Table
+

additional metalog distributions 

Solution to 
these difficulties

simulation sales price ($ mm)

number t market Shotwell 24th Mission Ashbury Peters Minna Haight

1 14% 6.1 4.9 5.0 6.4 6.3 9.1 27.4

2 32% 7.6 5.9 5.7 7.1 7.1 9.8 42.4

3 24% 7.4 5.5 6.1 7.1 6.5 9.1 36.2

4 15% 6.6 4.9 4.7 7.0 5.9 8.8 36.4

5 13% 6.4 5.1 4.6 6.1 5.8 8.9 37.1

6 30% 6.1 5.6 5.4 7.7 7.0 9.9 44.1

7 -3% 5.2 4.0 4.0 5.8 5.4 7.4 24.9

8 -8% 5.2 3.6 3.9 5.2 5.1 6.9 28.8

9 8% 5.9 5.5 4.4 6.9 6.0 9.0 33.9

10 13% 6.5 5.0 5.1 5.6 5.7 9.1 31.7

995 -15% 4.4 3.7 3.8 4.6 4.5 6.0 24.6

996 6% 5.7 4.0 4.7 6.0 5.6 8.3 26.3

997 7% 5.5 4.1 4.5 5.9 5.5 8.3 30.1

998 -5% 5.1 4.4 3.7 4.9 4.6 7.4 28.7

999 12% 6.2 6.5 4.6 6.2 5.4 8.4 35.3

1000 -21% 5.0 3.3 3.5 3.8 4.2 6.4 26.1
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How does one form an Outcomes Table?

Multivariate metalogs

A. Gather data empirically, or

B. Simulate using uniformly-distributed, mutually irrelevant random numbers yj:

− Calculate market1 = M3 (y1, x = (-20%,0%,20%), y = (.1,.5,.9),&) with the 
first random number y1

− Given market1 outcome, update parameters of M3 for all properties

− With random numbers y2, …, y8, calculate sales price outcome = M3(yj | 
xproperty*k, yproperty, &) for the seven properties

− Record results and repeat 1-3 with different sets of random numbers 
enough times (e.g. 1,000) to yield a probabilistic representation that’s 
equivalent to the analytic expression.
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Marginals are easy to calculate and interpret.

Multivariate metalogs

Outcomes Table 
(discrete, relevance preserved)

marginal: {Shotwell | &}

Shotwell quantiles

y median market unconditional

0.01 4.5 3.2

0.10 4.9 4.2

0.50 5.3 5.3

0.90 5.8 6.5

0.99 6.4 7.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

y

Shotwell = M5(y | x, y, &)

metalog simulation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 1 2 3 4 5 6 7 8 9 10

density m5(y | x, y, &)

simulation sales price  ($ mm) Shotw ell

number t market Shotwel l 24th Mission Ashbury Peters Minna Haight y x

1 14% 6.1 4.9 5.0 6.4 6.3 9.1 27.4 0.0005 2.3

2 32% 7.6 5.9 5.7 7.1 7.1 9.8 42.4 0.0015 2.5

3 24% 7.4 5.5 6.1 7.1 6.5 9.1 36.2 0.0025 2.6

4 15% 6.6 4.9 4.7 7.0 5.9 8.8 36.4 0.0035 2.8

5 13% 6.4 5.1 4.6 6.1 5.8 8.9 37.1 0.0045 2.8

6 30% 6.1 5.6 5.4 7.7 7.0 9.9 44.1 0.0055 2.9

7 -3% 5.2 4.0 4.0 5.8 5.4 7.4 24.9 0.0065 2.9

8 -8% 5.2 3.6 3.9 5.2 5.1 6.9 28.8 0.0075 2.9

9 8% 5.9 5.5 4.4 6.9 6.0 9.0 33.9 0.0085 3.0

10 13% 6.5 5.0 5.1 5.6 5.7 9.1 31.7 0.0095 3.1

995 -15% 4.4 3.7 3.8 4.6 4.5 6.0 24.6 0.9945 8.2

996 6% 5.7 4.0 4.7 6.0 5.6 8.3 26.3 0.9955 8.2

997 7% 5.5 4.1 4.5 5.9 5.5 8.3 30.1 0.9965 8.2

998 -5% 5.1 4.4 3.7 4.9 4.6 7.4 28.7 0.9975 8.6

999 12% 6.2 6.5 4.6 6.2 5.4 8.4 35.3 0.9985 8.9

1000 -21% 5.0 3.3 3.5 3.8 4.2 6.4 26.1 0.9995 9.2

yt = (t-0.5)/1000 (equally likely)

sort
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Any multivariate change of variable is easy to calculate and 

interpret.

Multivariate metalogs

sorted

portfolio

y x

0.0005 27.8

0.0015 28.6

0.0025 29.2

0.0035 31.2

0.0045 32.8

0.0055 33.0

0.0065 33.5

0.0075 34.3

0.0085 34.4

0.0095 36.0

0.9945 94.4

0.9955 94.9

0.9965 97.1

0.9975 97.3

0.9985 105.0

0.9995 110.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100 110

y

portfolio = M5(y | x, y, &)

metalog simulation

{portfolio | &}

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0 10 20 30 40 50 60 70 80 90 100 110

density m5(y | x, y, &)

portfolio quantiles

y median market unconditional

0.01 51.4 37.3

0.10 57.2 49.0

0.50 62.5 61.5

0.90 66.4 76.4

0.99 70.2 90.6

 sum

Outcomes Table 
(discrete, relevance preserved)

simulation sales price ($ mm)

number t market Shotwell 24th Mission Ashbury Peters Minna Haight

1 14% 6.1 4.9 5.0 6.4 6.3 9.1 27.4

2 32% 7.6 5.9 5.7 7.1 7.1 9.8 42.4

3 24% 7.4 5.5 6.1 7.1 6.5 9.1 36.2

4 15% 6.6 4.9 4.7 7.0 5.9 8.8 36.4

5 13% 6.4 5.1 4.6 6.1 5.8 8.9 37.1

6 30% 6.1 5.6 5.4 7.7 7.0 9.9 44.1

7 -3% 5.2 4.0 4.0 5.8 5.4 7.4 24.9

8 -8% 5.2 3.6 3.9 5.2 5.1 6.9 28.8

9 8% 5.9 5.5 4.4 6.9 6.0 9.0 33.9

10 13% 6.5 5.0 5.1 5.6 5.7 9.1 31.7

995 -15% 4.4 3.7 3.8 4.6 4.5 6.0 24.6

996 6% 5.7 4.0 4.7 6.0 5.6 8.3 26.3

997 7% 5.5 4.1 4.5 5.9 5.5 8.3 30.1

998 -5% 5.1 4.4 3.7 4.9 4.6 7.4 28.7

999 12% 6.2 6.5 4.6 6.2 5.4 8.4 35.3

1000 -21% 5.0 3.3 3.5 3.8 4.2 6.4 26.1

portfolio

($ mm)

65.1

85.7

77.9

74.2

74.0

85.8

56.8

58.6

71.7

68.6

51.6

60.6

63.8

58.8

72.6

52.1

portfolio selling price is 
sum over properties

Certain equivalent is 
easy to calculate 

portfolio

u-value

-0.001

0.000

0.000

-0.001

-0.001

0.000

-0.003

-0.003

-0.001

-0.001

-0.006

-0.002

-0.002

-0.003

-0.001

-0.005

risk

tolerance

10

e-value of

u-value

-0.004

certain

e-value equivalent

62.1 56.2
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Are these distributions equivalent? 

(i.e. can either be legitimately substituted for the other)

Yes -- if the distribution owner declares them to be so.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60

y

x

Cumulative Probability

metalog beta

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

0.00 10.00 20.00 30.00 40.00 50.00 60.00

y'

x

Probability Density

metalog beta

metalog

-1
]

]

=  � +  .!"# $
1 + !"# $
=  �=

0 < � < 1
� = 0
� = 1	

a1 -0.163

a2 1.174

a3 -0.097

a4 -0.275

and

x

a1 -0.163

a2 1.174

a3 -0.097

a4 -0.275

and where
y’

 � = 10,  . = 50,	where

beta y  =  � + ( .- �) y’  =

 � = 10,  . = 50	where α = 0.8, β = 0.9,
 � = 10,  . = 50	and α = 0.8, β = 0.9,

Appendix II: Equivalence and Exchangeability 
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1. Define uncertainties z1, z2, z3, … and decompose the joint into a marginal 
and conditionals convenient for assessment or modeling

{z1, z2, z3, … | &} = {z1 | &} {z2 | z1, &} {z3 | z2, z1, &} …

2. Encode the marginal(s) {z1 | &} as a metalog Mn(z1; xz1, yz1) – unbounded, 
semi-bounded, or bounded as appropriate.

3. Select a metalog representation for each conditional uncertainty zi such 
that its parameters are expressed as a function of the conditioning 
variables

Mn(zi; xzi(zi-1, zi-2 , … ), yzi (zi-1, zi-2 , … ))

4. Assess or model these parameter functions. 

5. Express the implied joint distribution as an Outcomes Table.

6. Explore any desired marginals, conditionals, and/or multivariate changes 
of variable – using additional metalogs as appropriate to aid interpretation 
and communication.

7. Fine tune and validate with the distribution owner.

Process for Developing Multivariate Distributions With Metalogs

Multivariate metalogs
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• Historical context

• Equations, parameters, and properties

• Theoretical development

• Shape flexibility compared to prior distributions

• Applications

- Fish biology

- Hydrology

- Decision analysis

• Multivariate metalogs

- Assessment protocol

- Real estate portfolio 

• Conclusions

Metalog Topics
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• Allow frequency data to "speak for itself" with highly-flexible continuous 
representations.

• Select among unbounded, semi-bounded, or bounded distributions 

• Skip time-consuming parameter estimation

• Facilitate Monte Carlo Simulation by convenient

• Sampling from input distributions

• Representing simulation outputs as smooth, continuous distributions 

• Use simple, closed-form equations -- easily-programmable-in-Excel 

• Apply in both univariate and multivariate contexts

Summary

Metalogs provide simple, flexible, easy-to-use continuous 

probability distributions to represent CDF data.

For Excel workbooks, publications, and supporting information, go to 

www.metalogdistributions.com
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Appendices
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Three-term unbounded metalog equations.*

given K = (Lα,	L2.M,	L
(α) then

																
=	q2.M
																�=	 
� ln	 
(α

α

(
 L
(α − Lα

x = �� � = 	
 + 	� ln �
1 − � + 	� � − 0.5 ln �

1 − �

probability density function (pdf):

cumulative distribution function (cdf):

y’ [
-1

]

where constants ai are derived from quantile assessments
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(e.g. for 10-50-90, α = 0.1)

Appendix I

* For the case where parameters are expressed symmetrically around the median.  See definition of SPT (symmetric 
percentile triplet) in Keelin, 2016.
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• Early days – learning and experimentation at Stanford

• First 25 years of professional practice (apl, Supertree, Risk Detective, Decision 
Advisor … reliance largely on others). Continuous distributions were

• Desirable for smooth representations and density (PDF) displays

• Impractical (none flexible enough to really “fit” the situation, complex to 
parameterize, analytically intractable in tree-based tools, no practical way to 
output PDF displays) 

• Founding of KR in 2003 (self reliance for developing DA tools, ended up 
developing “KR Shell” – using Excel, Crystal Ball, expanded 10-50-90 formats)

• Simulation solved one problem – making continuous-distribution 
computations analytically tractable – but did nothing to solve the other 
problems.

• 2009 light-bulb moment: why not invent continuous distributions that are 
practical (simple, flexible, easy and fast to use)?

Personal Journey to a New Family of Probability Distributions (I)

Appendix II: Detailed Personal Journey
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Personal Journey to a New Family of Probability Distributions (II)

• White-board sketches (starting with how to add skewness to the Normal 
distribution and parameterize it with 10/50/90 assessments) and collaboration 
with Brad Powley led to

• “Quantile-Parameterized Distributions” (Decision Analysis, Sept 2011)

• This solved the “difficult-to-parameterize” problem, and -- with the “Simple 
Q Normal” distribution -- made significant progress toward solving the “lack 
of flexibility” problem

• But problems still remained: lack of control over bounds, lack of 
algebraically-simple closed forms, lack of closed-form moments, need for 
more flexibility to accurately show PDFs of uncertain inputs and outputs. 

• The metalog family of distributions solves all these problems with simplicity, 
flexibility (unlimited shape parameters), and ease/speed of use (choice of 
bounds, quantile parameters)

• A significant improvement over previous families of flexible distributions --
Pearson (1895, 1901, 1916), Johnson (1949), and Tadikamalla and 
Johnson (1982)

• Solution to decision problems that tree-based methods can’t solve well … 
and some other pleasant surprises.

Appendix II: Detailed Personal Journey
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Are these distributions equivalent? 

(i.e. can either be legitimately substituted for the other)

Appendix III: Equivalence and Exchangeability 
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y’  ==y where µ = 50, s = 5 where µ = 50, s = 5

Yes, because they are mathematically equivalent.


