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Abstract

Encoding prior probability distributions is a fundamental step in any decision analysis.

A decision analyst often elicits an expert’s knowledge about a continuous uncertain

quantity as a set of quantile-probability pairs (points on a cumulative distribution

function) and seeks a probability distribution consistent with them.

Quantile-parameterized distributions (QPDs) are continuous probability distribu-

tions characterized by quantile-probability data. This dissertation demonstrates the

flexibility of QPDs to represent a wide range of distributional shapes, examines a

QPD’s range of parametric feasibility, and introduces various means of using QPDs

when encoding relevance between uncertainties.

A decision maker may or may not believe a continuous uncertain quantity has

well-defined bounds. For the former case, I offer a toolkit for engineering the support

of a QPD. For the latter, I develop a theory for comparing tail heaviness between

probability distributions and offer methods for engineering the tail behavior of a QPD.

I conclude with an example decision analysis: a pharmaceutical company CEO’s

decision whether to market or license a drug. This analysis uses QPDs to encode prior

probability distributions with bounded and unbounded supports. It introduces three

tools that use QPDs: data compression of multivariate probabilistic simulation, sen-

sitivity analysis of the tail heaviness of a prior probability distribution, and valuation

of probability assessment.
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Notation

Symbol Description

X a continuous uncertain quantity

x a degree of X

f(x) probability density function

F (x) cumulative distribution function

p cumulative probability

Q(p) quantile function

q(p) quantile density function

g(p) QPD basis function

Φ(·) CDF of standard normal distribution

φ(·) PDF of standard normal distribution

∼L left tail equivalence relation

∼R right tail equivalence relation

≺L left tail strict ordering relation

≺R right tail strict ordering relation

dom(f) the domain of the function f

supp(F ) the support of the probability distribution F

R the real numbers

R++ the positive real numbers

Rn the set of real n-vectors

Rm×n the set of real m× n matrices
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Chapter 1

Introduction

All decisions consist of three distinct elements: alternatives (what the decision maker

can do); information (what the decision maker knows); and preferences (what the

decision maker wants). Howard calls this formal description the decision basis [25, 26].

This dissertation is about the information component. More specifically, it introduces,

characterizes, and develops tools for representing a decision maker’s knowledge on a

continuous uncertain quantity—one that can take an uncountable number of possible

values. An example is the uncertain amount of time until a competitor introduces a

particular product. The goal is to quantify a decision maker’s knowledge in order to

combine it with her preferences to evaluate her best alternative.

1.1 Probability Encoding

From the advent of the field, decision analysts have taken the Bayesian view that

probability is a measure of an individual’s knowledge about a particular uncertain

distinction [21, 47]. In his earliest paper on the subject of decision analysis, Howard

observes “. . . the most significant part of the [Bayesian] revolution is not Bayes’s the-

orem or conjugate distributions but rather the concept of probability as a state of

mind, a 200 year old concept.” In his 1814 essay, Laplace took a Bayesian viewpoint

describing probabilities as “degrees of credence” [35, page 8]. A century later, Ram-

sey, another Bayesian, asserted that since “it is not easy to ascribe numbers to the

2



CHAPTER 1. INTRODUCTION 3

intensities of feelings,” one should quantify degree of belief by expressing it “as the

extent to which we are prepared to act on it” [49].

1.1.1 Probability and Quantile Elicitation

As the discipline of decision analysis developed in the 1960s, the encoding of prior

probability distributions was noted as a fundamental step [21, page 107]. Naturally,

the question of how to best elicit an expert’s prior probability distribution arose.

Soon, Tversky and Kahneman began documenting a classification of the various cog-

nitive biases that they observed in decision-making experimentation, including poor

performance in judging probability [65]. Concurrently, Spetzler and Staël von Hol-

stein [61] detailed a process for translating a decision maker’s knowledge about a

continuous uncertain quantity into a cumulative distribution function (CDF) by way

of a sequence of bets. A probability encoder asks these betting questions in a manner

designed to guide the decision maker away from Tversky and Kahneman’s cognitive

biases. Techniques for addressing motivational biases are different from the techniques

for addressing cognitive ones. Winkler and Matheson [39] introduced scoring rules

that incent a decision maker to truthfully report her probabilities on a continuous

uncertain quantity, and José and Winkler [31] introduced a family of scoring rules for

assessing quantiles rather than probabilities. In all of these approaches, the output

of the elicitation process on a continuous uncertain quantity is a finite sequence of

quantiles and associated cumulative probabilities (the points shown in Figure 1.1).

The nature of these data is a feature that distinguishes decision analysis from other

fields of study. For example, a Bayesian statistician might begin with diffuse prior

probability distributions and update them with a set of prior observations from an

uncertain process [30], and a physicist might construct prior probability distributions

by maximizing entropy under observed constraints such as a set of moments [29].

1.1.2 Choosing a Continuous Probability Distribution

Once the decision analyst asserts that he has sufficient quantile-probability data,

he strives to find a continuous probability distribution that is consistent with the
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Figure 1.1: A set of quantile-probability pairs

quantile-probability data (Figure 1.2). Spetzler and Staël von Holstein note that the

process of elicitation can result in quantile-probability pairs that are inconsistent (e.g.,

different quantiles for the same probability or pairs of points that are decreasing), in

which case the probability encoder can ask further betting questions of the decision

maker until her answers show consistency. Alternatively, given a set of inconsistent

quantile-probability pairs, the decision analyst can construct a continuous distribution

that is a reasonable representation of the given information.

In the early history of decision analysis, this probability distribution was a hand-

drawn CDF [21, page 109][69, page 781][47, page 166], or perhaps a member of the

canon of commonly used probability distributions like the exponential, normal, lo-

gistic, and so on. Both approaches suffice for describing continuous prior probability

distributions in a decision analysis, but both have deficiencies. Hand-drawn curves

lack the convenience of a concise functional description, and canonical probability

distributions tend to have a small number of parameters and therefore lack flexibility

in representing a wide diversity of distributional shapes.

Subsequent decision analytic research addressed these shortcomings by using quan-

tile-probability data to parameterize alternate continuous probability distributions.

Poland examines mixtures of Gaussian distributions [46] with an eye toward more

flexible prior distributions for Gaussian influence diagram models [54]. In a study es-

timating the moments of a continuous distribution, Runde parameterizes a CDF with
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Figure 1.2: A set of quantile-probability pairs and a CDF representing them

quantile-probability data by using Hermite tension splines [51]. The tension param-

eters of these splines allow control over the monotonicity of the spline—a necessity

for the function to be a CDF. Abbas constructs continuous probability distributions

by maximizing entropy. His method strives to add no information to the distribution

beyond that which the decision analyst knows [29]. When limiting the constraint set

to quantile-probability pairs (and the Kolmogorov axioms), the maximum entropy

distribution has a piecewise-linear CDF and a stairstep probability density function

(PDF)—a function that Abbas [2, 1] calls a fractile maximum entropy distribution

(FMED). He introduces the midpoint maximum entropy distribution (MMED) by be-

ginning with the FMED and adding the restriction that the PDF must cross each

interval of the FMED at its midpoint. Adding this midpoint heuristic makes the

PDF of the MMED continuous.

1.1.3 Approximating the Certain Equivalent

Once a decision analyst specifies a continuous prior probability distribution within a

decision model, he will likely approximate the decision maker’s certain equivalent by

approximating her distribution over some measure of value. As Smith writes, “De-

cision models involving continuous probability distributions almost always require

some form of approximation” [57]. The decision analyst can approximate a decision
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maker’s certain equivalent by discretizing one or more continuous prior probability

distributions and exactly computing an approximate certain equivalent using the re-

sulting discrete decision tree or influence diagram. Alternatively, he may sample

from the continuous probability distribution via probabilistic (Monte Carlo) simula-

tion and approximate the certain equivalent by using the simulates as probabilistic

input to the value model. He can combine these two approaches by discretizing input

continuous probability distributions and using Monte Carlo sampling from discrete

uncertainties to approximate the certain equivalent.

The half-century existence of the formal discipline of decision analysis has seen

computational power increase dramatically. Early decision analysis software com-

puted certain equivalents by solving discrete decision trees—an approach that en-

abled computational tractability. Perhaps this is why there are many techniques for

discretizing continuous probability distributions. One discretization technique is to

first hand-draw a curve through the assessed points, and then apply an algorithm

that uses the curve to choose discrete points on the value axis. Abt et al. [8] propose

the bracket-mean method, a common practice of the decision analysis group at SRI

as far back as the early 1970s.1 The bracket-mean method is a graphical approach

that preserves the mean of the original distribution. First, one divides the domain

of the CDF into an arbitrary number of brackets. Next, one chooses the single value

within each bracket that makes the area to the left of the value and below the CDF

equal the area to the right of the value and above the CDF. This value is the con-

ditional mean of the uncertain quantity, given the bracket. The probability assigned

to the conditional mean is the cumulative probability within the bracket. Smith

[58] mentions the bracket median method—similar in every way to the bracket mean

method, except that one chooses the conditional median for each bracket rather than

the conditional mean. Pearson and Tukey [45] introduce a method to estimate the

first and second moments of a continuous distribution using a discrete approximation

with three points of support. Keefer and Bodily build on this approach with their

extended Pearson-Tukey method—one shown by Reilly [50] to be empirically robust.

1Email correspondence with Jim Matheson, former director of the Decision Analysis group at
SRI (June 2010).



CHAPTER 1. INTRODUCTION 7

Miller and Rice [40] introduce an algorithm for an n-point discrete probability dis-

tribution that matches the first 2n − 1 moments of the continuous distribution. In

the case where the decision analyst does not want to specify a continuous probability

distribution (leaving moments unknown), they detail a discretization method (page

356) designed to approximate the moments of a continuous probability distribution

using only the assessed quantile-probability pairs by twice applying the Gaussian

quadrature prodedure. Bypassing the specification of a continuous probability distri-

bution comes at the cost of a second approximation, and possibly a third (page 362),

if the decision maker wants to improve accuracy while reducing the number of points

of support. The result of both algorithms is a discrete probability distribution with

an arbitrary number of points of support. It is unclear whether this algorithm will

tolerate incosistencies in quantile-probability data.

1.2 Research Objectives

This dissertation focuses on the choice of continuous probability distribution detailed

in §1.1.2. For decision analysis, it is desirable to have continuous probability distri-

butions that are

• readily parameterized by quantile-probability data;

• capable of taking a variety of useful shapes;

• convenient for evaluating decision models both through direct probabilistic sam-

pling and discretization.

While the three classes of distributions in §1.1.2 each have their own strengths, all fall

short of at least one of the three desiderata. Mixtures of Gaussians display a certain

lack of flexibility in distributional form—they tend to achieve skewness at the cost of

multimodality and/or many basis functions, and they will always have Gaussian tails.

Runde introduces Hermite tension spline CDFs as a means toward discretization, not

probabilistic simulation. Therefore, his work does not discuss how convenient it is to

sample a probability distribution whose CDF is a Hermite tension spline. Common
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probabilistic simulation methods use either a continuous probability distribution’s

quantile function (inverse transform sampling) or its PDF (acceptance-rejection sam-

pling) [36]. In general, CDF splines do not have closed-form quantile functions. Also,

Runde chooses to compute PDFs via numerical integration, an indication that these

piecewise functions might not be expedient to represent in closed form. Abbas’s

FMED and MMED both lack flexibility in representing a diversity of distributional

shapes. Recalling §1.1.2, the PDF of an FMED is stairstep, and that of an MMED

is piecewise linear. Moreover, if the continuous uncertain quantity has one or more

infinite tails, the quantile-probability pairs are insufficient data for representing its

probability distribution. In order to continue with a maximum entropy formalism,

the decision analyst must elicit a mean that is conditioned on the uncertain quantity

exceeding the most extreme quantile datapoint for each infinite tail. In other words,

the quantile-probability data itself is not sufficient to parameterize it.

In the case of a continuous uncertain quantity, the decision analyst desires a

probability distribution that is both consistent with the available quantile-probability

data and efficient to model. This desire motivates the three objectives of my research:

1. identify a class of probability distributions that meets the desiderata;

2. characterize this class of probability distributions;

3. demonstrate how decision analysts might use such distributions in practice.

In 2011, Tom Keelin and I addressed the first research objective by introducing

quantile-parameterized distributions (QPDs) [34], the distributions of this disserta-

tion. QPDs are probability distributions whose quantile function is a linear combi-

nation of basis functions.

1.3 Research Summary

The structure of this dissertation is linear—to a degree, the information in each chap-

ter is a requirement for understanding the material in the following chapter. Chapter
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2 serves as a reference chapter, giving a brief overview of quantile functions and cre-

ating distinctions used by the theory introduced in subsequent chapters. Although

the results in this chapter are not new, the reader may see unfamiliar material—even

if that person has a strong background in probability theory. Chapter 3 reviews

quantile-parameterized distributions summarizing our original work [34]. New mate-

rial in this section includes a refined interpretation of QPDs, further characterization

of their parametric limits, and a section on encoding relevance (probabilistic depen-

dence) using QPDs. The content of this chapter is a theoretical contribution that

satisfies the first research objective and begins to address the second.

Chapter 4 further addresses the second research objective by building a theory

and tools to engineer the support of a QPD, including constrained optimization,

truncation, and transformation. Chapter 5 completes my contribution to the second

research objective by building a general theory of tail behavior applicable to all proba-

bility distributions with strictly increasing, twice-differentiable quantile functions. In

it, I develop tail characterization tools based on a probability distribution’s quantile

function. This theory culminates in some QPD-specific results that give methods for

engineering the tail behavior of a QPD.

Chapter 6 addresses the third research objective, by way of an example deci-

sion analysis—the CEO of a pharmaceutical company choosing whether to license

or market a drug. It introduces three QPD-based decision analytic techniques: data

compression of the output of a probabilistic simulation, sensitivity analysis on tail

heaviness of a prior probability distribution, and valuing probability assessment.



Chapter 2

An Overview of Quantile Functions

It is appropriate to begin a dissertation titled Quantile Function Methods for Decision

Analysis with a brief introduction to the quantile function. This is a reference chapter,

filled with definitions, propositions, and corollaries relevant to the remainder of this

dissertation. I include all proofs within the text to develop the reader’s intuition for

describing probability distributions with quantile functions.

2.1 Some Basic Definitions

For an uncertain quantity X, a quantile function Q(p) is a generalized inverse of the

cumulative distribution function F (x) ≡ P{X ≤ x}. Like a CDF, it characterizes a

probability distribution.

Q(p) = inf{x ∈ R | p ≤ F (x)} (2.1)

Many commonly used probability distributions have quantile functions that are in-

verse CDFs. Section 2.2 discusses the conditions under which Q = F−1.

In order to satisfy the axioms of probability, a quantile function must meet a

few criteria. First, it must be defined over the domain of p ∈ (0, 1). For any given

cumulative probability p, a quantile function Q(p) must return a value, called a

quantile. Second, a quantile function must be nondecreasing over its domain. This

10
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Figure 2.1: The quantile function of the standard normal distribution

requirement corresponds to a nondecreasing CDF. In other words, it guarantees that

the probability on any interval P{a < X ≤ b} ≥ 0 for all a, b ∈ R. Figure 2.1 shows

the graph of a quantile function.

These two functional requirements lead to methods for constructing quantile func-

tions using other functions as building blocks. For a clear and concise introduction

to quantile functions, see Gilchrist [17, section 3.2]. I adapt some of his language

and notation in this section and add some elementary proofs to condition the reader

to think about probability distributions as represented by quantile functions rather

than the more traditional representations like CDFs and PDFs.

Definition 1. Given a differentiable quantile function Q(p), a quantile density func-

tion (QDF) q(p) is the derivative Q′(p).

Definition 2. A p-probability density function, or pPDF, is the composition of a

probability density function and its associated quantile function, f(Q(p))

Tukey [64] gave the name sparsity to what Parzen [44] would later call the quan-

tile density function. And Parzen gave the name density quantile function to what

Gilchrist [17] would later call the p-probability density function. Figures 2.2 and 2.3

show the graphs of a QDF and pPDF.
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Figure 2.2: The quantile density function of the standard normal distribution

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

p

f
(Q

(p
))

Figure 2.3: The p-probability density function of the standard normal distribution
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Corollary 1. The pPDF is the reciprocal of the QDF.

Proof. A PDF f(x) = dF (x)
dx

. Change variables x = Q(p) and p = F (x), and write

f(Q(p)) = dp
dQ(p)

. By Definition 1,

f(Q(p)) =
1

q(p)
. (2.2)

Like CDFs, PDFs (when they are defined), and quantile functions, the QDF and its

reciprocal the pPDF (when they are defined), completely characterize a probability

distribution. Both the QDF and pPDF are particularly useful when modeling with

QPDs.

2.2 The Continuity of Probability Distributions

and Quantile Functions

A continuous probability distribution is one whose CDF is a continuous function.

However, a continuous probability distribution does not imply a continuous quantile

function, nor does a continuous quantile function imply a continuous probability

distribution. When both CDF and quantile function are continuous, Q = F−1, so

that F (Q(p)) = p and Q(F (x)) = x.

Figure 2.4 shows a continuous quantile function whose probability distribution is

mixed discrete and continuous. The quantile associated with the flat region of the

quantile function is the quantile with probability mass.

Proposition 1. A probability distribution F is continuous if and only if its quantile

function Q(p) is strictly increasing.

Proof. First, assume that Q is not strictly increasing so that Q(p1) = Q(p2) for some

p1, p2 ∈ (0, 1), p1 < p2. Then there exists a point mass of probability P{X = x0} ≥
p2 − p1 > 0, implying that F is not a continuous function, a contradiction.
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Figure 2.4: A discontinuous probability distribution
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Now assume that F is not continuous and choose x0 ∈ dom(F ) at a point of

discontinuity so that pL < pR, where pL = limx→x−0
F (x) and pR = limx→x+0

F (x).

Choose p0 so that pL < p0 < pR. Applying (2.1), Q(p0) = inf{x | p0 ≤ F (x)} =

inf{x | pR ≤ F (x)} = Q(pR) or Q(p0) = Q(pR), which contradicts the original

statement that Q(p) is strictly increasing.

Figure 2.5 depicts a continuous probability distribution whose quantile function

is not continuous. The discontinuous region of the quantile function corresponds to

an interval of zero probability density. For a quantile function that is both continuous

and strictly increasing, a condition beyond that of Proposition 1 must hold.

Proposition 2. The quantile function Q of a probability distribution F is continuous

if and only if F is strictly increasing on the interval {x | 0 < F (x) < 1}.

Proof. First assume F (x) is not strictly increasing and choose three points from its

domain, x1 < x2 < x3 so that F (x1) = F (x2) < F (x3). Now Q(F (x1)) = Q(F (x2)) <

Q(F (x3)). So Q is not continuous, because it does not map to the point x2, a

contradiction.

Now assume Q is not continuous and choose p0 ∈ (0, 1) at a point of discontinuity

so that xL < xR, where xL = limp→p−0
Q(p) and xR = limp→p+0

Q(p). Choose x0 so

that xL < x0 < xR. By (2.1) Q(F (xL)) = Q(F (x0)), which implies F (xL) = F (x0),

contradicting the statement that F (x) is strictly increasing.

The focus of this dissertation is probability distributions whose CDFs are both

continuous and strictly increasing, making them and their quantile functions bijective

so that Q = F−1. Unless otherwise stated, references to probability distributions in

the subsequent chapters make this assumption.

2.3 Transforming Quantiles and Cumulative Prob-

abilities

One can modify probability distributions through various transformations of proba-

bility and quantile. The resulting distribution, when represented as quantile function,
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Figure 2.5: A probability distribution whose CDF is not strictly increasing
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has an analogous form when represented as a PDF or CDF. For example, applying a

positive linear transformation to a quantile function a+bQ(p) is analogous to shifting

and scaling the argument of its CDF F (x−a
b

).

Proposition 3. A positive linear transformation of a quantile function is a quantile

function.

This proof and the others that immediately follow, take two parts: show that the

function is 1) defined and 2) nondecreasing over the interval (0, 1).

Proof. Given a quantile function Q(p) and real numbers a and b > 0, let Q̃(p) =

a + bQ(p). Since Q(p) is a quantile function, it is defined over (0, 1), therefore Q̃(p)

must be also defined over (0, 1). Also, its derivative Q′(p) ≥ 0, making the derivative

Q̃′(p) = bQ′(p) ≥ 0 since b > 0. Thus, Q̃(p) is nondecreasing.

This result naturally leads to a discussion of standard probability distributions.

Gilchrist [17, page 64] defines them using quantiles, and I adapt his definition here.

Definition 3. A probability distribution is a standard probability distribution if some

measure of position (e.g., its median) is zero, and some linear measure of its vari-

ablility (e.g., its inter-quartile range) is one.

A standard normal distribution fits the above definition because its median (and its

mean) is zero and its standard deviation, a constant multiple of its inter-quartile

range, is one. This definition allows for two others.

Definition 4. A probability distribution with quantile function Q(p) has location

parameter a and scale parameter b if Q(p) = a+ bQs(p), where Qs(p) is the quantile

function of a standard probability distribution.

A location parameter is a scalar that translates the origin of the graph of a stan-

dard probability distribution’s PDF and CDF. A familiar location parameter is the

mean µ of a normal distribution. One can use a scale parameter to change the units

of an uncertain quantity. As an example, suppose X is an uncertain quantity that

represents your belief over the minimum width of your car’s brake pads in units of
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millimeters. Let Z = X/10 represent that same width in centimeters. Given the

quantile function representing X is Q(p), then the quantile function that represents

Z is 1
10
Q(p). A familiar scale parameter is the standard deviation σ of a normal

distribution.

Proposition 3 shows that a positive linear transform of a quantile function is

a quantile function. This is not the only operation guaranteed to yield a quantile

function—the same is true for certain nonlinear transforms of quantile functions and

even sums of quantile functions.

Proposition 4. A positive linear combination of a finite number of quantile functions

is a quantile function.

Proof. By Proposition 3, this proof can proceed without loss of generality by replacing

linear combinations of quantile functions with the summation of quantile functions.

Let p1 ≤ p2, where p1, p2 ∈ (0, 1). Since quantile functions are non-decreasing,

Q1(p1) ≤ Q1(p2) and Q2(p1) ≤ Q2(p2), making the sum Q1(p1) + Q2(p1) ≤ Q1(p2) +

Q2(p2). Therefore, the sum of two quantile functions is a quantile function. By an

inductive argument, a positive sum of any finite number of quantile functions is a

quantile function.

Proposition 4 allows the creation of new quantile functions that are positive linear

combinations of other quantile functions. Chapter 3 builds on this result.

Proposition 5. Given a nondecreasing function h and a quantile function Q(p), the

composition h(Q(p)) is a quantile function.

Proof. Let p1 ≤ p2, where p1, p2 ∈ (0, 1). Because Q is a quantile function, this

implies Q(p1) ≤ Q(p2). Since h is a nondecreasing function, it is true that h(Q(p1)) ≤
h(Q(p2)).

Proposition 5 serves as an alternate proof of Proposition 3 since a positive linear

transformation is a nondecreasing function. Probability distributions described by

transforms of quantile functions have a few features of note. The graph of both the

quantile function (and CDF) of a quantile function Q̃(p) = h(Q(p)) is the graph
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of the original quantile function Q(p) with the function h applied to its quantiles.

However, the graph of its pPDF (and PDF) requires an additional transformation of

the probability density function f .

Corollary 2. A probability distribution whose quantile function Q̃(p) = h(Q(p)),

where Q(p) is a quantile function and h is a nondecreasing function has a pPDF

f̃(Q̃(p)) = f(Q(p))/h′(Q(p)) wherever f and h′ are defined.

Proof.

f̃(Q̃(p)) =
1

d
dp
h(Q(p))

by Proposition 12;

=
1

h′(Q(p))Q′(p)
by the derivative chain rule;

=
f(Q(p))

h′(Q(p))
by Proposition 12.

Proposition 3 shows that any function of the form a + bQ(p), where Q(p) is a

quantile function and b > 0, must also be a quantile function. Applying a positive

affine transformation to the cumulative probability p = F (x) rather than quantile

function Q(p) provides another feature of quantile functions.

Proposition 6. Let F be a probability distribution with PDF f(x), and quantile

function Q = F−1. The quantile function Q̂(p) = Q(p−a
b−a ), 0 ≤ a < b ≤ 1 if and only

if its associated probability distribution F̂ is the probability distribution F conditioned

on the interval (Q(a), Q(b)).

Proof. Let α = Q(a), β = Q(b), and p̂ = p−a
b−a . Let F̂ (x) ≡ F (x̂) ≡ p̂ be the CDF

corresponding to Q̂(p) ≡ Q(p̂) ≡ x̂.
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Q̂(p) = Q

(
p− a
b− a

)
⇔ F (Q̂(p)) =

p− a
b− a

by applying F ;

⇔ F̂ (x) =
F (x)− F (α)

F (β)− F (α)
Q̂(p) = Q(p̂)⇔ F (Q̂(p)) = F̂ (x);

⇔ F̂ (x) =

∫ x
α
f(t)dt

F (β)− F (α)
by the fundamental theorem of calculus.

This is the definition of conditional probability for the PDF of a probability distribu-

tion F over the interval (Q(a), Q(b)).

Proposition 6 shows that one need not compute a new quantile function when con-

ditioning a probability distribution F over an interval (Q(a), Q(b)). It suffices to use

the composition of the quantile function Q with the affine transformation p−a
b−a .

The next proposition shows how to reflect a distribution about the origin. LetQ(p)

and Q̃(p) be the quantile functions corresponding to PDFs f(x) and f̃(x), respectively.

Proposition 7. Given f(x) > 0, the quantile function Q̃(p) = −Q(1− p) if and only

if the PDF f̃(x) is the PDF f(x) reflected about the point x = 0.

Proof. It suffices to show that Q̃(p) = −Q(1− p) if and only if f̃(x) = f(−x).

Q̃(p) = −Q(1− p)

⇔ Q̃′(p) = Q′(1− p)

⇔ f̃(Q̃(p)) = f(Q(1− p)) by Proposition 12;

⇔ f̃(x) = f(−x) letting x = Q̃(p).

Proposition 7 is helpful when discussing the left and right tail behavior of probability

distributions—the subject of Chapter 5.
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2.4 Integrals of Quantile Functions

The mathematics of probability theory involves the integration of various functions.

For example, for a continuous uncertain quantity X, the mth moment E[Xm] is defined

by the integral
∫
xmf(x)dx. One can also compute these integrals involving PDFs by

integrating various functions of quantile functions.

Proposition 8. The mth moment of a probability distribution F with quantile func-

tion Q is
∫

(Q(p))mdp.

Proof. Let f(x) = dF
dx

. The definition of the mth moment of F is

E[Xm] =

∫ +∞

−∞
xmf(x)dx. (2.3)

Since p ≡ F (x) and f(x) ≡ dF
dx

, dp = f(x)dx. By substituting, dp = f(x)dx, and

x = Q(p), (2.3) becomes

E[(Q(p))m] =

∫ 1

0

(Q(p))m dp. (2.4)

.

Another important integral in probability theory is that of entropy. One can

compute the entropy of a probability distribution using quantile functions. The focus

here is on relative entropy—that of continuous probability distributions.

Proposition 9. The differential entropy of a continuous probability distribution F

with quantile function Q is
∫

log(Q′(p))dp.

Proof. Let f(x) = dF
dx

. The integral −
∫
f(x) log(f(x))dx is the definition of the

differential entropy of F . Substituting dp = f(x)dx, x = Q(p), and f(Q(p)) =

1/Q′(p) gives
∫

log(Q′(p))dp.

Kullback-Leibler (KL) divergence quantifies the information lost when approxi-

mating a probability distribution F with another distribution G. The KL divergence

DKL(F,G) ≡
∫

log
(
f(x)
g(x)

)
f(x)dx. As with differential entropy, one can express KL
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divergence in terms of quantile functions. The first integral of (2.5) is the cross-

entropy from G to F , and the second is the entropy of distribution F .

Proposition 10. The KL divergence of a probability distribution G from a reference

probability distribution F is∫
log(Q′G(G(QF (p))))dp−

∫
log(Q′F (p))dp. (2.5)

Proof. The definition of KL divergence is DKL(F,G) ≡
∫

log
(
f(x)
g(x)

)
f(x)dx, which

equals −
∫

log(g(x))f(x)dx+
∫

log(f(x))f(x)dx. Substituting dp = f(x)dx, and x =

QF (p) and by (2.2),

DKL(F,G) =

∫
log(Q′G(G(QF (p))))dp−

∫
log(Q′F (p))dp.

This completes the introduction to quantile functions, and gives the mathematical

foundation for the tools and theory that follow. The first research objective beckons—

identify a useful class of probability distributions that is readily parameterized by a

decision analyst’s quantile-probability data.



Chapter 3

Quantile-Parameterized

Distributions

Although their use is not common in decision analysis, quantile functions have some

advantages over traditional functional representations of continuous probability dis-

tributions like CDFs and PDFs. First, transforming a quantile function transforms

the uncertain variable that it represents. Second, a convenient method for probabilis-

tic simulation (inverse transform sampling) uses a probability distribution’s quantile

function. Third, linear combinations of quantile functions often enjoy modeling flex-

ibility over mixtures of CDFs or PDFs for representing quantile-probability data,

because there is no constraint that requires coefficients to be positive and sum to

unity.

This chapter gives a summary of quantile-parameterized distributions, the proba-

bility distributions we introduced in 2011 [34]. A QPD is defined by its quantile func-

tion, thus affording a decision analyst all of the advantages of modeling with quantile

functions. In addition, QPDs are parameterized by quantile-probability data by way

of a linear map—a desirable feature highlighted in the next section.

3.1 Definition

In order to formally define a QPD, it is convenient to first introduce three distinctions.

23
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Definition 5. A set of functions {gi(p) | i ∈ 1 : n} is linearly independent over an

interval I ⊆
⋂n
i=1 dom(gi) if the linear combination

∑n
i=1 βigi(p) = 0 for all p ∈ I

implies that all n components of β equal zero.

Definition 6. The members of a set of linearly independent functions

{gi(p) | i ∈ 1 : n, p ∈ (0, 1)} are called basis functions.

Definition 7. A set of basis functions {gi(p) | i ∈ 1 : n, p ∈ (0, 1)} is regular if each

basis function is continuously differentiable, and the set of basis function derivatives

{g′i(p) | i ∈ 1 : n, p ∈ (0, 1)} is linearly independent over the interval (a, b), for all

0 < a < b < 1.

By definition of linear independence, given at least one nonzero coefficient, a linear

combination of the derivatives of a regular set of basis functions will not map to zero

over an interval. Because of this, Definition 7 implies that a linear combination of

a set of regular basis functions will have no “flat spots.” Unless otherwise specified,

the notation gi(p) will refer to a member of a regular set of basis functions.

A particular family of QPDs corresponds to a particular regular set of basis func-

tions. The set defines the QPD’s flexibility to represent various distributional shapes,

its support, and its tail behavior—features that chapters 3, 4, and 5, respectively,

examine. The notion of a regular set of basis function sets the stage for the key

definition of this chapter.

Definition 8. A QPD is a probability distribution whose quantile function can be

written:

Q(p) =
n∑
i=1

βigi(p) 0 < p < 1 (3.1)

where β ∈ Rn, and {gi(p) | i ∈ 1 : n, p ∈ (0, 1)} is a regular set of basis functions.

By Definition 8, the normal, exponential, logistic, and uniform probability distribu-

tions are all QPDs. QPDs are similar to the parametric family of distributions that

Karvanen introduces for estimating the parameters of a probability distribution by

way of L-moment statistics [33]. The QPD definition removes Karvanen’s restriction

that the basis functions be quantile functions (i.e., nondecreasing), and it adds the

regularity condition of Definition 7.
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Proposition 11. F is a QPD if and only if its quantile function Q is strictly in-

creasing and continuously differentiable on the interval (0, 1).

Proof. First show that if F is a QPD, then Q is continuous and strictly increasing.

Given F is a QPD, Definitions 7 and 8 state that Q is a linear combination of con-

tinuously differentiable basis functions {gi(p) | i ∈ 1 : n, p ∈ (0, 1)}. Therefore, Q

is continuous. It also implies that Q′ is a linear combination of the derivatives of

those functions. By Definition 7, the set of the derivatives of the basis functions

{g′i(p) | i ∈ 1 : n, p ∈ (0, 1)} is linearly independent over the interval p ∈ (a, b), for all

0 < a < b < 1. This implies that there exists no interval (a, b), 0 < a < b < 1 over

which the derivative Q′(p) is everywhere zero. Therefore, Q is strictly increasing.

Next, show that if Q is strictly increasing and continuously differentiable on the

interval (0, 1), then F is a QPD. Given that Q is strictly increasing on the interval

(0, 1), there exists no interval p ∈ (a, b), 0 < a < b < 1 over which its derivative Q′(p)

is everywhere zero. This, along with the fact that Q is continuously differentiable,

implies that the singleton {Q} meets the criteria of a regular set of basis functions.

To complete the proof, use Definition 8 to construct a QPD with lone basis function

Q and coefficient β1 = 1.

This equivalence relationship gives a different perspective on the definition of a

QPD. It also gives rise to some corollaries that aid in the understanding of QPDs.

Corollary 3. A QPD is a continuous probability distribution.

Corollary 4. A QPD has a CDF F (x) that is strictly increasing for all

{x | 0 < F (x) < 1}.

Corollary 5. A QPD’s quantile function Q is the inverse function of its CDF,

Q = F−1.

These three corollaries are true as a consequence of Proposition 11. Corollary 3,

because Q is strictly increasing; Corollary 4, because Q is continuous. Corollary 5

combines these two facts. An example of a continuous probability distribution that

is not a QPD is a probability distribution whose CDF is piecewise linear and strictly



CHAPTER 3. QUANTILE-PARAMETERIZED DISTRIBUTIONS 26

increasing (making its quantile function not continuously differentiable). An example

of a strictly increasing CDF that does not represent a QPD is F (x) = x3 + 0.5. Its

quantile function Q(p) = max{0, p− 0.5}1/3 + min{0, p− 0.5}1/3 is not differentiable

at p = 0.5.

The quantile function equation (3.1) of a QPD also allows for the concise repre-

sentation of various functions of quantile functions. Two such useful examples are

the pPDF and moments of a QPD.

Proposition 12. Where defined, the equation for the p-probability density function

of a QPD is

f(Q(p)) =

(
n∑
i=1

βi
dgi(p)

dp

)−1

. (3.2)

Proof. Substitute (3.1), the definition of a QPD into (2.2), the definition of a pPDF.

Proposition 12 is also a general equation for computing the PDF of a specific QPD.

As an example, take the QPD with quantile function Q(p) = β1p+ β2(− log(1− p)).
Neither its PDF nor CDF have a closed form, a circumstance that is often the case

for QPDs. However, using its pPDF f(Q(p)) = 1−p
β1(1−p)+β2 , one can graph its PDF by

plotting f(Q(p)) versus Q(p). Figure 3.1 graphs the PDF of this QPD with β1 = 2

and β2 = 1.

Proposition 13. The mth moment of a QPD is

∫ 1

0

(
n∑
i=1

βigi(p)

)m

dp. (3.3)

Proof. Substitute (3.1), the definition of a QPD into (2.4), the definition of the mth

moment of a probability distribution in terms of its quantile function.

Proposition 13 is useful for computing moments of a QPD whose PDF is not an ex-

plicit function of x, making (2.3) an integral of an implicit function of x. In contrast,
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Figure 3.1: A graph of the PDF of the probability distribution with quantile function
Q(p) = 2p− log(1− p)

the integral (3.3) is an explicit function of p. This equation allows a more straight-

forward means of computing moments, for example, when using moment matching

to discretize a QPD.

3.2 Parameterization and Feasibility

While every QPD has a quantile function of the form (3.1), not all functions of

the form (3.1) characterize a QPD. Just as parametric probability distributions have

infeasible parametric regions (e.g., a normal distribution’s standard deviation must be

positive), various vectors of coefficients β yield functions that aren’t quantile functions

because they are decreasing over a particular interval. This section explores the

feasibility of QPDs and how to parameterize a QPD using quantile-probability data—

a requirement for meeting the first desideratum of Chapter 1.

Proposition 14. A function of the form (3.1) characterizes a QPD if and only if

n∑
i=1

βi
dgi(p)

dp
≥ 0 all p ∈ (0, 1) (3.4)
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Proof. According to Proposition 11, the quantile function Q(p) of a QPD is a contin-

uously differentiable function that is strictly increasing in p. Q meets these conditions

if and only if (3.4) holds (Q′(p) is nonnegative).

Given the regularity condition of Definition 7, the set {p ∈ (0, 1) |
∑n

i=1 βi
dgi(p)
dp

=

0} has measure zero (
∑n

i=1 βi
dgi(p)
dp

> 0 almost everywhere). An example of a QPD

where the number of elements in the set {p ∈ (0, 1) |
∑n

i=1 βi
dgi(p)
dp

= 0} is nonzero is

the QPD with quantile function Q(p) = (p − 0.5)3. Its derivative is zero at p = 0.5

and positive otherwise. Proposition 14 is important because it gives a method to

verify whether a function of the form of (3.1) characterizes a continuous probability

distribution. The condition in (3.4) also serves as a feasibility constraint for any

optimization formulation relating to a QPD. Henceforth, any reference to feasibility

in relation to a QPD indicates the set of vectors

Sβ =

{
β ∈ Rn

∣∣∣∣∣
n∑
i=1

βi
dgi(p)

dp
≥ 0, p ∈ (0, 1)

}

that make (3.1) a QPD.

Proposition 15. A QPD’s set of feasible vectors Sβ is a proper subset of Rn.

Proof. Finding a single infeasible vector proves this proposition. Take a QPD with

quantile function Q(p) =
∑n

i=1 βigi(p). Since Q(p) is a quantile function, at least one

feasible vector β̂ ∈ Sβ must exist, so that
∑n

i=1 β̂i
dgi(p)
dp

> 0 for some p ∈ (0, 1). Let

β̆ = −β̂. This makes
∑n

i=1 β̆i
dgi(p)
dp

< 0 for some p ∈ (0, 1); so β̆ ∈ Rn, while β̆ 6∈ Sβ.

Therefore, Sβ ⊂ Rn.

There will always exist coefficient vectors β that result in a function of the form

(3.1) that is not a quantile function. This result is important when updating a QPD’s

coefficients using Bayes’s theorem, a fact that §6.5 highlights.

Proposition 16. A QPD’s set of feasible vectors Sβ is convex.

Proof. One can express Sβ as an infinite intersection of sets
⋂
p∈(0,1) Sp, where Sp is

the halfspace {β ∈ Rn | bTβ ≥ 0} and the vector b =
(
dg1(p)
dp

, · · · , dgn(p)
dp

)T
. All
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halfspaces are convex sets, and any intersection of convex sets yields a convex set,

therefore Sβ is convex.

Corollary 6. A QPD’s set of feasible vectors Sβ is a convex cone.

Proof. Let β2 and β3 be QPD-feasible vectors, and let b =
(
dg1(p)
dp

, · · · , dgn(p)
dp

)T
so that

bTβ2 ≥ 0 and bTβ3 ≥ 0, all p ∈ (0, 1). Choose two nonnegative constants, c, d ∈ R,

and create the linear combination c · (bTβ2) + d · (bTβ3), which is also nonnegative

because it is a positive linear combination of positive real numbers. Rearranging

terms, bT (c · β2 + d · β3) ≥ 0, completing the proof.

Since convex optimization requires convex feasible sets, Proposition 16 is directly

relevant to optimization problems involving QPDs. Perhaps more importantly, Propo-

sition 16 is useful for determining whether a function of the form (3.1) is a quantile

function. The feasibility of input quantiles will return with the discussion of the

parametric limits of an example QPD.

Hearkening back to Proposition 5, transforming any quantile function with a non-

decreasing function h yields a quantile function. With a further restriction to the

transforming function h, an analogous statement holds for the quantile functions of

QPDs.

Proposition 17. Given a function h with inverse h−1, both strictly increasing and

continuously differentiable, the quantile function Q̃(p) = h−1(Q(p)) describes a QPD

if and only if Q(p) describes a QPD.

Proof. First, show that a QPD with quantile function Q(p) implies a QPD with

quantile function Q̃(p). By Proposition 11 it suffices to show that Q̃(p) = h−1(Q(p))

is strictly increasing and continuously differentiable (SICD) on the interval (0, 1).

Because Q(p) represents a QPD, Proposition 11 states that Q is SICD on the interval

(0, 1). Transforming an SICD function Q by applying another SICD function h−1

yields an SICD function.

Next, show that a QPD with quantile function Q̃(p) implies a QPD with quantile

function Q(p). Apply h to both sides of Q̃(p) = h−1(Q(p)) to yield h(Q̃(p)) = Q(p).

Invoke the argument from the preceding paragraph to this equation.
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The convention of setting Q̃(p) = h−1(Q(p)) rather than h(Q(p)) is because h

transforms the variable x = Q̃(p). As an example, the transform for the log-normal

distribution is h(x) = log(x). Applying this transform to the standard normal distri-

bution and makes a lognormal distribution with quantile function Q̃(p) = exp(Φ−1(p))

and pPDF f(Q̃(p)) = φ(Φ−1(p))/ exp(Φ−1(p)), where φ is the standard normal PDF,

and the parameters of the lognormal are µ = 0, and σ = 1.

Corollary 7. Given a function h with inverse h−1, both strictly increasing and con-

tinuously differentiable, a QPD with quantile function Q(p) =
∑n

i=1 βigi(p) and a

QPD with quantile function Q̃(p) = h−1(Q(p)) have the same set of feasible vectors

β.

Corollary 7 is true by Proposition 17. It proves useful when checking the feasibility

of a QPD whose quantile function is an h transform of another QPD. Take a QPD

with quantile function Q(p) = µ+σΦ−1(p). This quantile function describes a normal

distribution with mean µ and standard deviation σ for all µ ∈ R and all σ ∈ R++.

By Corollary 7, the quantile function Q(p) = exp(µ+σΦ−1(p)) describes a log-normal

distribution for all µ ∈ R and all σ ∈ R++. The parametric limits are identical.

The following theorem shows that quantile-probability data can uniquely deter-

mine a QPD’s β vector. In such cases, one can think of these quantile-probability

data as QPD parameters themselves.

Theorem 1 (Quantile Parameters Theorem). A set of n distinct points {(xi, pi) | i ∈
1 : n} uniquely determine β ∈ Rn of a QPD by the matrix equation

β = Y −1x, (3.5)

Where β, x ∈ Rn, the set of basis functions {gi(p) | i ∈ 1 : n, p ∈ (0, 1)} is regular,

and

Y =


g1(p1) · · · gn(p1)

...
. . .

...

g1(pn) · · · gn(pn)

 , (3.6)

if and only if:
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I. the matrix Y is invertible, and

II.
∑n

i=1 βi
dgi(p)
dp
≥ 0, all p ∈ (0, 1).

Proof. Condition I is true if and only if equation (3.5) holds, and the resulting func-

tion (3.1) is unique to the quantile inputs x ∈ Rn. To show this, set up a system

of n equations according to (3.1). This yields the matrix equation x = Y β, using

the definition of Y from (3.6). Equation (3.5) holds if and only if Y is invertible.

Since Y is square, it defines a one-to-one mapping of the quantiles x ∈ Rn to the

coefficients β ∈ Rn.

It is possible that the function (3.1) resulting from a set of input quantiles x ∈ Rn

does not represent a probability distribution. A set of coefficients β ∈ Rn characterize

a QPD if and only if condition II holds. This is true by Proposition 14.

The power of the Quantile Parameters Theorem is that a decision analyst does

not need to directly assess the β vector. Instead, (3.5) uniquely maps n pairs of

quantile-probability data to β ∈ Rn. Moreover, one can use other sources of quantile-

probability data, such as the results of a probabilistic simulation, to parameterize a

QPD.

A note on condition I: because the set of basis functions is linearly independent,

the matrix Y is invertible in all but pathological cases. If such a case should occur,

a small perturbation will solve the problem. A note on condition II: Proposition 15

shows that it is possible to choose a set of points {(xi, pi) | i ∈ 1 : n} such that this

condition is not satisfied for a given set of basis functions—even when those points

are coherent with the axioms of probability (nondecreasing in x). This chapter will

return to the discussion of feasibility with an example QPD.

3.3 An Example QPD: The Simple Q-normal

To this point, the discussion of QPDs has been rather abstract. An example will

demonstrate some of the many features and limitations of QPDs. This prototypical

QPD is the simple Q-normal.
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In accordance with (3.1), all QPDs are completely characterized by a set of basis

functions. The simple Q-normal is defined as the QPD whose basis functions form

the set {1, p,Φ−1(p), pΦ−1(p)}. This makes its quantile function

Q(p) = β1 + β2p+ β3Φ−1(p) + β4pΦ
−1(p), p ∈ (0, 1) (3.7)

As noted in Keelin and Powley [34], this form is equivalent to an uncertain variable

x described by the standard normal CDF Φ(µ(p), σ(p)) whose parameters are linear

functions of p ≡ Φ(x).

µ(p) = β1 + β2p (3.8)

σ(p) = β3 + β4p (3.9)

This makes its CDF and PDF implicit functions of x. To compute its pPDF, differ-

entiate (3.7) and take its reciprocal.

f(Q(p)) =
φ(Φ−1(p))

β3 + β4p+ φ(Φ−1(p)) (β2 + β4Φ−1(p))
(3.10)

To create a three parameter Q-normal distribution, set any one of β1, β2, β3, or

β4 equal to zero. The simple Q-normal reverts to the normal distribution when

β2 = β4 = 0.

To compute the coefficients β ∈ R4 from a set of four quantile-probability pairs,

solve the set of four linear equations (3.11), denoted by the matrix equation x = Y β.
x1

x2

x3

x4

 =


1 p1 Φ−1(p1) p1Φ−1(p1)

1 p2 Φ−1(p2) p1Φ−1(p2)

1 p3 Φ−1(p3) p3Φ−1(p3)

1 p4 Φ−1(p4) p4Φ−1(p4)



β1

β2

β3

β4

 . (3.11)

This matrix Y represents a linear map R4 → R4 of the quantiles x to the coefficients β.

In accordance with the Quantile Parameters Theorem, the simple Q-normal is fully

parameterized by any set of four quantiles that result in a nondecreasing quantile

function. To compute β, rewrite (3.11) as β = Y −1x. As long as Y is invertible, this
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Figure 3.2: Some skewed simple Q-normal distributions

method delivers a unique function for any given set of four quantile-probability pairs.

Figures 3.2 and 3.3 show that it is possible to parameterize the simple Q-normal

into a rich set of distributional forms, each consistent with a different set of quan-

tiles. The simple Q-normal is supported over the real numbers, and it allows for

the adjustment of its first four moments through the adjustment of its quantiles or

coefficients. And because a QPD is constructed explicitly as a quantile function, it is

well suited to probabilistic simulation—a feature that is true of QPDs in general. To

generate a simple Q-normal random variate via the inverse transformation method,

sample a uniform(0, 1) random variate and substitute it for the variable p in (3.7).

3.4 Moments of the Simple Q-normal

Since the probability density function for the simple Q-normal is implicit, one can use

(3.3) to determine its central moments. Substituting (3.7), the mean of the simple

Q-normal is

E[xm] =

∫ 1

0

(
β1 + β3Φ−1(p) + β4pΦ

−1(p) + β2p
)
dp
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Figure 3.3: Some symmetric simple Q-normal distributions

Some further simplification yields the equation

E[xm] = β1 +
β2

2
+ β3

∫ 1

0

Φ−1(p)dp+ β4

∫ 1

p=0

pΦ−1(p)dp (3.12)

According to (3.3), the first of the two remaining integrals in (3.12) is the mean of

the standard normal distribution, which equals zero. For the second integral, change

the variable of integration from p to z and integrate by parts[
−Φ(z)φ(z) +

√
1

16π
erf(z)

]∞
−∞

where erf(z) represents the error function. This quantity equals
√

1
4π

. So the simple

Q-normal’s mean equals

β1 +
β4√
4π

+
β2

2
. (3.13)

By the same method, the simple Q-normal’s variance is approximately

β3
2 + β3β4 + β4

2

(
1

3
+

1

2π
√

3
− 1

4π

)
+
β3β2√
π

+ 0.282β4β2 +
β2

2

12
, (3.14)
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where 0.282 approximates the integral
∫ 1

0
p2Φ−1(p)dp. The simple Q-normal’s mean

is not a function of β3, the constant term of (3.9), just as the normal distribution’s

mean is not a function of its variance. Similarly, the simple Q-normal’s variance is

not a function of β1, the constant term of (3.8), just as the normal distribution’s

variance is not a function of its mean. Recall that the simple Q-normal reduces to

the normal distribution when β2 = β4 = 0. In this case, the mean must equal β1,

and the variance must equal β3
2, a final demonstration that (3.13) and (3.14) are

consistent with (3.8) and (3.9).

3.5 Parameterizing the Simple Q-normal with

Quantiles from Familiar Probability Distribu-

tions

Suppose an expert assigns 1st, 10th, 50th, and 90th quantiles consistent with an

underlying familiar, named distribution like the beta, logistic, student’s t, and so on.

By the Quantile Parameters Theorem, one can use these quantiles to parameterize

the simple Q-normal distribution. But how good is the approximation? Taking these

four quantiles from a diverse list of named probability distributions and using them to

parameterize the simple Q-normal explores the fidelity of the approximation. Figure

3.4 depicts the CDF and PDF of each named distribution along with the simple Q-

normal that approximates it. Note that the simple Q-normal’s CDF is barely possible

to discriminate from the CDF of the named distribution used to parameterize it.

Table 3.1 shows the 1st, 10th, 50th, and 90th quantile for each named distribution

along with two accuracy metrics:1 the Kolmogorov-Smirnoff distance (maximum p-

deviation) and Kullback-Leibler divergence of the simple Q-normal from each of the

named distributions using (2.5).

1Each of these two metrics were computed by probabilistic simulation.
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Table 3.1: Deviation between the simple Q-normal and various named distributions
Named K-S KL

Distribution 1% 10% 50% 90% Distance Divergence

beta(2, 4) 0.033 0.11 0.31 0.58 0.010 0.008

logistic(30, 1) 25 28 30 32 0.009 0.035

student’s t(8) −2.9 −1.4 0 1.4 0.010 0.003

lognormal(0, 0.5) 0.31 0.53 1 1.9 0.017 0.043

Weibull(10, 5) 3.2 4.0 4.8 5.4 0.014 0.010

normal(30, 7.8) 12 20 30 40 0 0

3.6 Flexibility of the Simple Q-normal

One can transform the parametric limits associated with (3.10) in terms of two ratios:

r1 and r2. The first indicates distributional symmetry

r1 =
x50 − x10

x90 − x10

,

where xi is the ith quantile. For all symmetric distributions, r1 = 0.5, whereas the

right-skewed exponential distribution has an r1 equal to 0.365 regardless of its rate

parameter. The ratio r2 indicates tail width

r2 =
x10 − x1

x90 − x10

.

Projecting the quantile vector x ∈ R4 onto the r1−r2 plane gives a better visualization

of the parametric limits of the simple Q-normal. Plotting these limits demonstrates

the flexibility that even a basic QPD like this one offers. The ovoid shape of Figure

3.5 represents the limits of feasible r1−r2 pairs; feasible quantile ratios for the simple

Q-normal lie within the ovoid; infeasible quantiles lie without.

Figure 3.6 shows how the limits of some named distributions, such as the normal

and exponential, are points in the r1 − r2 plane. Other named distributions, such as

the Weibull, lognormal, triangular, and student’s t, are curves.

A beta distribution is a very flexible functional form able to represent a wide

range of distributional shapes. Its feasible region maps to an area in the r1 − r2
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Figure 3.5: Simple Q-normal parametric limits in the r1 − r2 plane

plane. Figure 3.6 indicates that despite its flexibility, the beta distribution adds little

to the Q-normal’s territory, beyond some bimodal forms. A QPD of modest functional

form like the simple Q-normal demonstrates a flexibility to match quantiles that is

not approached by a battery of named probability distributions. From a different

perspective, the simple Q-normal has the flexibility to substitute for a wide range of

named probability distributions in representing uncertainty.

Proposition 18. The set of feasible quantile ratios r = (r1, r2) for a QPD is convex.

Proof. Let ψ : (x1, x10, x50, x90)→
(
x50−x10
x90−x10 ,

x10−x1
x90−x10

)
be the function whose image is

the vector r = (r1, r2). Let Sr be the set of feasible ratio vectors Sr = {r ∈ R2 | r =

ψ(x), x ∈ Sx} where Sx = {x ∈ R4 | x = Y β, β ∈ Sβ} is the set of quantile vectors

that yield a Q-normal probability distribution, and Sβ = {β ∈ R4 |
∑n

i=1 βi
dgi(p)
dp

>

0, all p ∈ (0, 1)} is the set of feasible β coefficients. From Proposition 16, Sβ is convex.

Any linear transformation of a convex set is convex, so Sx is also convex. Since ψ is

a linear fractional function, and linear fractional functions preserve convexity, Sr is
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also convex.

The convexity of the simple Q-normal’s ovoid facilitates quality control. Imagine a

computer program that asks a user for the 1st, 10th, 50th, and 90th quantiles x ∈ R4

in order to parameterize the simple Q-normal. Is the β vector in the QPD-feasible

set? One might answer this question by exhaustively computing (3.4) using the input

quantiles x over a grid of p ∈ (0, 1) to a desired accuracy. Alternatively, one might

compute and store a table of upper and lower limits of the ratio r2 over a grid of

r1 to a desired accuracy. By the convexity of the ovoid, any input quantile vector x

whose ratio vector r = ψ(x) lies within a polygon formed by connecting any subset

of these pre-computed feasible boundary points must yield a Q-normal probability

distribution. The convexity of the ovoid also allows the use of a bisection algorithm

for solving the quasi-convex optimization problems of computing these upper and

lower limits. See Boyd and Vandenberghe [11] for a discussion on using bisection to

solve quasi-convex optimization problems.
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3.7 Parameterizing QPDs Using Overdetermined

Systems of Equations

Experiments in decision making reveal evidence that a set of probability assessment

data can be incoherent [67, 37]—meaning the dataset is inconsistent with the axioms

of probability. Spetzler and Staël von Holstein acknowledge that probability encoding

procedures may lead to what they term as inconsistencies in data [61]. If a decision

analyst makes enough assessments such that the number of quantile-probability pairs

exceeds the number of coefficients β, a toolkit is available for finding a QPD that

reasonably represents the dataset, whether or not it is incoherent.

In other cases of overdetermined systems, as in the discrete CDF that results

from probabilistic simulation, the number of data points may be far greater than the

dimension of β. In such cases, one can use a QPD to provide a smooth representation

of the data as an alternative to a histogram. Chapter 6 highlights the use of QPDs

in compressing the multivariate data ouput of a probabilistic simulation.

This section illustrates various methods for dealing with such overdetermined sys-

tems using the set of quantile-probability data in Table 3.2. Despite an incoherent

dataset, a simple Q-normal distribution might exist that decision maker finds satis-

factory. Figure 3.7 depicts four examples. Each approach computes the β vector

Table 3.2: A set of inconsistent quantile-probability data
Probability 0.05 0.15 0.20 0.50 0.65 0.80 0.85 0.90

Quantile 0.0 2.5 1.5 4.0 5.0 7.0 6.0 8.0

that minimizes the sum of squares between the QPD’s quantile function and the

quantile-probability data. A set of m quantile-probability pairs and QPD with n

linearly independent basis functions gives a matrix Y ∈ Rm×n. The matrix for the
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Figure 3.7: Various Q-normal approximations derived from incoherent data



CHAPTER 3. QUANTILE-PARAMETERIZED DISTRIBUTIONS 42

simple Q-normal, built with the probabilities from Table 3.2, is:

Y =



1 Φ−1(0.05) 0.05Φ−1(0.05) 0.05

1 Φ−1(0.15) 0.15Φ−1(0.15) 0.15

1 Φ−1(0.20) 0.20Φ−1(0.20) 0.20

1 Φ−1(0.50) 0.50Φ−1(0.50) 0.50

1 Φ−1(0.65) 0.65Φ−1(0.65) 0.65

1 Φ−1(0.80) 0.80Φ−1(0.80) 0.80

1 Φ−1(0.85) 0.85Φ−1(0.85) 0.85

1 Φ−1(0.90) 0.90Φ−1(0.90) 0.90


. (3.15)

Choosing a vector β ∈ Rn that minimizes the Euclidean norm of the vector of resid-

uals ‖x− Y a‖2 gives the closed-form equation for the least-squares approximation

(providing Y is full rank):

β =
(
Y TY

)−1
Y Tx, (3.16)

where x is the vector of quantiles from Table 3.2, and β is the vector of coefficients that

specify the quantile function of the simple Q-normal distribution. The simple Q-

normal generated by least-squares approximation gives the result shown in the plots

on the first row of Figure 3.7.

The second and third rows of plots show how to adjust the simple Q-normal from

one extreme of the quantile-probability pairs to the other by applying a weighted

least-squares approximation. The second row of plots uses a weighting vector in

order to shift the curve toward points 3 and 7. The third row uses weights shifted

toward points 2 and 6. The β vector computed from the weighted least-squares

approximation is

β =
(
Y TWY

)−1
(WY )T x,

where W ∈ Rm is a diagonal matrix whose diagonal elements are the weighting vector

applied to each residual. Table 3.3 shows the weights for rows two and three of Figure

3.7.

The final row of plots in Figure 3.7 is a constrained, weighted least-squares ap-

proximation. It uses the weighting vector from the third row constrained so that the
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Table 3.3: Two weighting vectors
Point 1 2 3 4 5 6 7 8

Weighting vector of row 2 0.05 0 0.4 0.05 0.05 0 0.4 0.05

Weighting vector of row 3 0.05 0.4 0 0.05 0.05 0.4 0 0.05

Q-normal passes through the assessed median (4, 0.5), which is point 4 of Figure 3.7.

To solve for the vector β ∈ Rn, use the matrix equation[
β

ν

]
=

[
2Y TWY c

cT 0

]−1 [
2Y TWx

4

]
,

where ν is the Lagrange multiplier for the constraint on the median, and the vector

c = [1, 0, 0, 0.5]T is the vector of basis functions [1, Q(p), pQ(p), p] of equation (3.7)

evaluated at p = 0.5. These four methods are part of a toolkit for parameterizing the

simple Q-normal to blend a set of quantile-probability data. Figure 3.7 shows how

the methods lead to diverse CDFs and PDFs. The ability to make such adjustments

allows the probability encoder to give feedback in the probability encoding process,

and creates a new set of possibilities for probabilistic sensitivity analysis in a decision

analysis. For example, a decision analyst can check whether the best alternative

changes as the quantile-probability pairs that parameterize a QPD change from one

extreme to the other.

Parameterizing QPDs using overdetermined systems of equations is not limited to

the quadratic penalty function of the least-squares approximation. For example, one

might choose to minimize the sum of the absolute values of the residuals. Regardless

of the method, a probability distribution resulting from any probability encoding

method should pass the ultimate test of whether the decision maker declares that it

reflects her beliefs.

3.8 Encoding Relevance Between QPDs

The notion of probabilistic dependence, or relevance [27] between uncertainties, is an

important concept in probability theory. In simplest terms, if observing one uncertain
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variable changes a person’s probability distribution over another, then those two

uncertainties are relevant. Relevance is a mutual property so if, for example, an

expert’s annual precipitation Forecast for the coming year in your city is relevant to

the sum total inches of Precipitation measured in your rain gage over that year, then

Precipitation is, in turn, relevant to Forecast.

One reason for encoding relevance is for model fidelity—accurate representation

of the decision maker’s beliefs. A second reason is that encoding relevance allows

one to update the probability distribution over one uncertainty after observing a

relevant uncertain variable. This is a necessary condition for valuing information. If

the decision maker were a farmer deciding what crop to plant, how much should he

be willing to pay in order to observe Forecast, given that such an observation would

change his probability distribution over Precipiatation? Without encoding relevance,

he cannot answer this question. Bayes’s theorem governs the updating of information

between two uncertainties A and B.

P{B | A} =
P{B}P{A | B}

P{A}

It is a simple equation, but can be difficult to implement for continuous uncertain

quantities, except for those whose prior distributions and likelihood functions are con-

jugate. For a thorough discussion on conjugate distributions, see Raiffa and Schlaifer

[48]. Unfortunately, most pairs of QPDs lack the property of conjugacy. When a

prior and likelihood function are not conjugate, their posterior distribution P{B | A}
lacks a closed form. The difficulty lies in computing the normalizing constant P{A}.
For arbitrary prior-likelihood combinations, a decision analyst can turn to simulation

methods that sample from the posterior distribution whether or not it has a closed

form. Methods of simulation include, but are not limited to, Markov-Chain Monte

Carlo (MCMC) methods. Because most pairs of QPDs lack the property of conju-

gacy, Bayesian updating will require a simulation method. See Gelman [16] for an

overview of MCMC methods and algorithms for implementing them. See Shachter

and Peot [55] for a discussion and comparison of various simulation approaches for

probabilistic inference using relevance diagrams.
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Figure 3.8: A probability distribution over Precipitation

Encoding relevance between two continuous uncertain quantities poses a diffi-

culty: complete characterization of their joint probability distribution requires an

uncountably infinite number of assessments. As with encoding marginal continuous

distributions with a finite number of quantile assessments, encoding joint continuous

probability distributions requires modeling approximations.

This section is a brief discussion of practical methods for encoding relevance

between continuous uncertain quantities using one or more QPDs. All three ap-

proaches begin with a marginal distribution over one continuous uncertainty, Precip-

itation. Figure 3.8 encodes this marginal distribution by parameterizing the QPD

whose basis functions are {1,Φ−1(p), pΦ−1(p)} with the quantile-probability pairs

{(15, 0.1), (20, 0.5), (30, 0.9)} making β = [20.0 3.41 4.88]T .
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3.8.1 Conditioning on a Discretized Marginal Distribution

One approach for encoding relevance is to first discretize the decision maker’s contin-

uous distribution over Precipitation. Simulating the first five moments of the probabil-

ity distribution over Precipitation and discretizing it using Miller and Rice’s algorithm

[40] yields the discrete probability distribution whose points of support are 15.8, 24.6,

and 37.9 inches with probabilities 0.06, 0.48, and 0.46, respectively. The second step

is to assess three distributions for Forecast, conditioned on each of the three points

of support. Each set of conditional quantiles can parameterize a QPD, for example,

with basis functions {1,Φ−1(p), pΦ−1(p)}. Table 3.4 shows these data and Figure 3.9

Table 3.4: Quantile assessments for Forecast given Precipitation
Forecast | Precip. [in.]→ Quantiles

Precipitation [in.] ↓ 0.10 0.50 0.90

15.8 13 16 21

24.6 20 26 33

37.9 31 39 51

depicts each continuous distribution over Forecast, conditioned on the three values

of Precipitation. The top image of Figure 3.11 depicts 1, 000 samples from the joint

Precipitation-Forecast distribution. The key tradeoff is between the accuracy of the

discretization approximation and the number of conditional assessments. Another

downside is that the number of assessments grows exponentially in the number of

conditioning uncertainties.

3.8.2 Conditioning on a Continuous Marginal Distribution

A second approach for encoding relevance between variables is to assess continuous

probability distributions over one or more of the parameters of a conditional dis-

tribution. In this case, the decision analyst may use QPDs in multiple ways. He

may encode the conditional distribution over Forecast as a QPD, describing one or

more of its coefficients as functions of the Precipitation uncertainty. Or he may di-

rectly encode the decision maker’s uncertainty over the quantile assessments of an
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+0.97pΦ−1(p)
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+1.95pΦ−1(p)

Figure 3.9: Forecast conditioned on a discretized distribution over Precipitation

expert. The following example demonstrates the former approach; §6.5 demonstrates

the latter approach in the application of valuing probability assessment.

The decision analyst can begin with a set of conditional assessments like those in

Table 3.4 and use that data to choose a continuous function that maps a particular

observation of Precipitation to one or more of its parameters. Take as an example

the conditional QPD whose quantile function is

Q(p | R) = R +R/20
(
1 + 4Φ−1(p) + 2pΦ−1(p)

)
,

where the variable R represents a given observation of the Precipitation uncertainty.

This conditional probability distribution is equivalent to Forecast having an additive,

heteroskedastic error term described by the QPD with quantile function Q(p) =

(1/20)(1 + 4Φ−1(p) + 2pΦ−1(p)), scaled by Precipitation. The middle image of Figure
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3.11 shows 1, 000 points sampled from the joint probability distributions generated

by the conditional probability distribution described in this subsection.

The advantage to the method of encoding a probability distribution conditioned

on a continuous marginal distribution is the same as the advantage of encoding a

continuous marginal distribution over a naturally continuous variable—fidelity to

the decision maker’s beliefs. However, there may be difficulty in choosing a condi-

tional probability distribution that is flexible enough to adequately reflect the decision

maker’s knowledge while being reasonably parameterizable.

3.8.3 Relating Uncertain Quantities with Copulas

Clemen and Reilly [13] write, “A disadvantage with the typical marginal-and-

conditional approach is that the required number of probability assessments can grow

exponentially with the number of variables.” A third approach is to encode the deci-

sion maker’s knowledge of the second uncertainty as a marginal QPD and separately

encode relevance. The decision analyst now has two marginal continuous probability

distributions, but no function for relating them. Copulas are a class of such func-

tions. Sklar’s theorem [43, page 21] shows that one can express any joint cumulative

distribution function H as a copula C, which is a function that maps two or more

marginal cumulative probabilities to a joint probability.

H(x1, . . . , xn) = C (F (x1), . . . , F (xn))

As a functional form, copulas work particularly well with QPDs because a) copulas

accept arbitrary marginal distributions and b) both quantile functions and copulas

take cumulative probabilities as arguments.

To use the copula method, the decision analyst must encode the decision maker’s

marginal distribution over Forecast. Figure 3.10 encodes this marginal distribution

by parameterizing the QPD whose basis functions are {1,Φ−1(p), pΦ−1(p)} with the

quantile-probability pairs {(14, 0.1), (21, 0.5), (35, 0.9)} making β = [21.0 4.78 6.83]T .

The next step is to choose a copula and parameterize it in a manner consistent

with the decision maker’s knowledge relating Precipitation and Forecast. The decision
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Figure 3.10: A probability distribution over Forecast

analyst chooses the multivariate Gaussian copula—perhaps the most commonly used

copula. In order to parameterize it, he chooses the approach detailed by Clemen,

Fischer, and Winkler [12]. They present an empirical study testing six assessment

methods, including conditional fractile and concordance probability, which one can use

to estimate two pairwise rank-correlation coefficients, Spearman’s ρ and Kendall’s τ ,

respectively. One can use either of these rank-correlation coefficents to compute the

corresponding Pearson’s correlation coefficients rij necessary for creating the corre-

lation matrix for a Gaussian copula. These assessment methods require conditional

expectations to be monotone in the conditioning variable (e.g., no ∪ or ∩-shaped

relationships).

rij = 2 sin
(πρij

6

)
(3.17)

rij = sin
(πτij

2

)
Through a series of assessment questions like those used in the study of Clemen

et al., the decision analyst encodes Spearman’s ρ as 0.67 and computes the copula’s
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covariance matrix shown in (3.18) using (3.17).

Σ =

[
1 0.65

0.65 1

]
(3.18)

The bottom image of Figure 3.11 depicts 1, 000 samples from the joint Precipitation–

Forecast distribution. The advantage to a copula-based approach is that it requires

relatively few parameters to describe complex relationships between uncertainties.

Clemen, Fischer, and Winkler note that their subjects performed well at assessing

correlation directly, and that much work could be done to frame assessment questions

and train decision makers in a way that might improve assessments. There remains

another disadvantage of the copula method: the problem of assessing a marginal

distribution that may not be easy to think about—the reading of a detector, for

example. A more natural assessment might be one conditioned on Precipitation,

lending itself to one of the first two methods of this section.

3.9 Engineering QPDs

A decision maker’s declaration that a QPD represents her uncertainty is a simulta-

neous declaration that its set of basis functions is satisfactory. Beyond that, this

chapter offers no axiomatic foundation for choosing a QPD’s basis functions. The

choice of basis functions does, however, affect the characteristics of a QPD. Return

to the simple Q-normal as an example. The first basis function g0(p) = 1 makes β1

a location parameter according to Definition 4; g1(p) = Φ−1(p) makes the support of

the simple Q-normal the real number line; g2(p) = pΦ−1(p) imparts the element of

skewness through β3; and g3(p) = p exerts an effect tail heaviness through β4.

Since a QPD’s basis functions determine many of its characteristics, choosing a set

of basis functions is one way to engineer a QPD. The next two chapters focus on two

key elements of a probability distribution that one may want to engineer. Chapter 4

introduces tools for engineering the support of a QPD, and Chapter 5 introduces a

theory for engineering its tail behavior.
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Figure 3.11: One thousand samples from the joint probability distributions over Fore-
cast and Rain compare the methods of discretized and continuous marginal distribu-
tions and copulas



Chapter 4

Engineering the Support of a

Quantile-Parameterized

Distribution

Many continuous uncertain quantities have one or more well-defined limits. For ex-

ample, the volume of recoverable oil in a reservoir can’t be less than zero barrels,

and the market share of a product must be between zero and one hundred percent

inclusive. When encoding a decision maker’s knowledge about a continuous uncertain

quantity, it is important to consider the range of possible values that it can take. This

range of possible values is called the support.

Definition 9. The support of a continuous probability distribution F , denoted

supp(F ), is the subset of the domain of its PDF that has nonzero density,

{x ∈ R | f(x) > 0}.

Proposition 19. The support of a continuous probability distribution F with quantile

function Q(p) is its image {Q(p) | p ∈ (0, 1)}.

52
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Proof. By the definition of support,

{x ∈ R | f(x) > 0}

⇔ {Q(p) | f(Q(p)) > 0, p ∈ (0, 1)}

⇔
{
Q(p)

∣∣∣∣ 1

Q′(p)
> 0, p ∈ (0, 1)

}
⇔ {Q(p) | p ∈ (0, 1)}

The first equivalence is the substitution x = Q(p); the second equivalence is the direct

application of (2.2). The third equivalence holds because Q(p) is the quantile function

of a continuous probability distribution F ; therefore, Q′(p) > 0 for p ∈ (0, 1), and
1

Q′(p)
> 0 for all p ∈ (0, 1).

4.1 How Basis Functions Affect a QPD’s Support

Because of Proposition 19, one need look no further than the image of a continuous

probability distribution’s quantile function in order to determine that distribution’s

support. This result naturally extends the discussion of support to QPDs. The choice

of basis functions has implications on the support of a QPD before the decision analyst

makes a single probability assessment.

Theorem 2 (QPD support theorem). Given the set Xi = {gi(p) | p ∈ (0, 1)} is the

image of the ith basis function gi(p) of a QPD F , the following statements are true.

1. Xi is a finite interval for all i ∈ {1 : n} if and only if supp(F ) is a finite

interval.

2. Xi is a semi-infinite interval for exactly one basis function i, and Xj is a finite

interval for all j 6= i implies supp(F ) is semi-infinite.

3. Xi = (−∞,∞) for any i ∈ {1 : n} implies supp(F ) = (−∞,∞).

See the appendix for the proof of the QPD support theorem. Note that its state-

ments hold, regardless of QPD-feasible vectors β ∈ Rn. For a QPD whose support is
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a finite interval, Theorem 2 mandates that the image of each of its basis functions be

finite, for example {1, p, p2}. Likewise, for a QPD with semi-infinite support begin

with a set of n− 1 basis functions whose images are finite intervals and add one basis

function whose image is a semi-infinite interval, for example {1, p, p2, log(p)}. Finally,

for a QPD whose support is (−∞,∞), Theorem 2 suggests choosing at least one basis

function whose image is (−∞,∞), for example {1, p, p2, log(p),Φ−1(p)}. The choice

of basis functions grants a useful but limited control over a QPD’s support. Precise

support control is available through a different set of tools that I will introduce later

in this chapter.

The theory that follows makes no effort to lengthen an uncertainty’s support

from a semi-infinite or finite interval into a semi-infinite or infinite interval. Well-

behaved basis functions that make for QPDs whose support is a semi-infinite or

infinite interval are readily available. The more useful way to engineer the support

of a probability distribution is to shorten it from a semi-infinite or infinite interval

into a specific finite or semi-infinite interval. The focus of this section is to show

methods for turning a QPD with a given support into a new QPD whose support is a

precise subset of the original’s. For example, a decision maker who is uncertain about

the fraction of current customers that will cancel a given subscription in the coming

year knows for certain that the value must lie between zero and one, inclusive. All

fractions outside of the unit interval should be assigned zero probability density. A

QPD such as the shifted version of Gilchrist’s skew-logistic, whose basis functions are

{1, log(p),− log(1 − p)}, will not meet this criterion because its support is the real

line. Figure 4.1 depicts this QPD parameterized by the set of quantile-probability

pairs {(0.1, 0.1), (0.4, 0.5), (0.8, 0.9)}, making its quantile function Q(p) = 0.33 +

0.11 log(p) + 0.21 (− log(1− p)).

4.2 Defining Support with Extreme Quantiles

It is tempting to think that choosing a QPD whose basis functions map to the interval

(0, 1) would lead to a QPD whose support is also (0, 1). Unfortunately, this is not true.

Theorem 2 is the most general statement I have regarding such a QPD: its support
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Figure 4.1: A QPD with infinite support

is a finite interval. As an example, take the QPD with quantile function Q(p) =

5QB1(p) + 2QB2(p) + QB3(p), where QB1(p), QB2(p) and QB3(p) are the quantile

function of the beta distribution with (α, β) parameters (1, 5), (3, 3), and (5, 1). The

three basis functions {QB1(p), QB2(p), QB3(p)} are each supported on (0, 1), while

Q(p) has support (0, 8).

An alternative is to assess the extreme quantiles. Doing so makes the assessed

quantiles of the Fraction of Customers uncertainty become {(0, 0), (0.1, 0.1), (0.4, 0.5),

(0.8, 0.9), (1, 1)}. Returning to the basis functions {QB1(p), QB2(p), QB3(p)}, the

system is now overdetermined—five sets of quantile-probability pairs and three basis

functions. From here, a decision analyst can choose two new basis functions, each of

whose images is a finite interval, making sure that the resulting set of basis functions

is regular. Or one can use a constrained least-squares approximation similar to §3.7

with the constraint that the QPD must pass through both extreme quantiles. This

is equivalent to a quadratic program with β constrained to the three-dimensional
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simplex,

minimize
β

(Y β − x)T (Y β − x)

subject to
3∑
i=1

βi = 1

βi ≥ 0, i = 1, . . . , 3,

where x = (0.1, 0.4, 0.8) and

Y =


QB1(0.1) QB2(0.1) QB3(0.1)

QB1(0.5) QB2(0.5) QB3(0.5)

QB1(0.9) QB2(0.9) QB3(0.9)

 .
This constrained least-squares approximation yields the QPD Q(p) = 0.16QB1(p) +

0.84QB2(p) shown in Figure 4.2. There is negligible weight on the third basis function

QB3(p). The downside of this method is that it is not guaranteed to pass through the

original three quantile-probability pairs.

4.3 Defining Support by Truncation

A more straightforward approach for defining the support of a QPD, or a quantile

function in general, is to begin with a probability distribution whose support extends

too far and then truncate its support by “chopping off” one or both of its tails. To

truncate the support of a distribution F with quantile function Q(p), apply the affine

transform

p̂ = p · (b− a) + a; a, b ∈ (0, 1) (4.1)

to the cumulative probability p. The resulting quantile function Q(p̂) ≡ Q̂(p) repre-

sents the probability distribution F̂ , whose support is (Q(a), Q(b)). This is the inverse

of the conditional probability transform of Proposition 6. When using this trunca-

tion method on a QPD, apply the p-transform after first computing the coefficients β.

This preserves the quantile function’s linearity in its basis functions, maintaining the
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Figure 4.2: A QPD with (0, 1) support computed via constrained least-squares
approximation

ease of computing the coefficients β from a set of assessed quantiles.

Take as an example the QPD of Figure 4.1. To truncate this distribution, begin

by transforming the cumulative probability p of its quantile function Q(p) = 0.33 +

0.11 log(p) + 0.21(− log(1 − p)). In order to apply the transform given by (4.1),

compute the cumulative probabilities associated with the endpoints of the desired

support, which is (0, 1). This makes the constant a = F (0) and the constant b =

F (1). By iteration, a and b are approximately 0.05 and 0.96, respectively. The

resulting quantile function of the truncated distribution F̂ shown in Figure 4.3 is

Q̂(p) = 0.33 + 0.11 log(0.91p+ 0.05) + 0.21 (− log (1− (0.91p+ 0.05))).

Two nice features of this approach are: 1) the coefficients β need not be recal-

culated, and 2) the p-transformation renormalizes the PDF so that it sums to unity.

Figure 4.3 higlights the two negative features of the truncation method 1) its dis-

tribution is no longer guaranteed to pass through the assessed quantiles, and 2) its

chopped-off tails may be a poor representation of the decision maker’s knowledge.
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Figure 4.3: A truncated QPD with finite support

Chopping off more tail probability can worsen these negative factors. The modeler

must decide whether the convenience of the truncation method outweighs the loss in

fidelity of the resulting probability distribution.

When modeling, one can simulate from the p-transformed distribution F̂ using

the inverse-transform method. Equivalently, one can simulate from F and reject any

sampled value that lies outside the interval (Q(a), Q(b)). Although this rejection

sampling method is straightforward, rejecting simulates comes with a computational

cost. The number of rejections, and therefore the cost, is proportional to the amount

of tail probability that is chopped off. This fact, along with the aforementioned

two negative features, suggests that the truncation method is best when the total

probability truncated from the original distribution is small.
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4.4 Defining Support by Quantile Function Trans-

formation

Instead of transforming p, one can control an uncertainty’s support by applying a

transform to Q(p), the quantile function itself. According to Proposition 5, if the

transforming function is nondecreasing, it maps one quantile function to another

quantile function. And Proposition 17 states that if the transforming function h is

strictly increasing and continuously differentiable (SICD) with an SICD inverse h−1,

it maps the quantile function of one QPD to the quantile function of another QPD.

This section makes use of these results to develop tools for transforming quantile

functions, with a focus on QPDs. It uses the convention h : R → R is an SICD

function with SICD inverse h−1.

One can solve for the β coefficients of a QPD created by transforming the quantile

function of another QPD using the method introduced in the Quantile Parameters

Theorem (theorem 1), namely:

β̃ = Y −1x̃, (4.2)

Where a, x̃ ∈ Rn, and

x̃ =


h(x1)

...

h(xn)

 , (4.3)

The matrix Y is defined by (3.11).

Continuing with the earlier example from this chapter, one can represent the

decision maker’s uncertainty about the fraction of customers canceling a subscription

in the coming year by transforming a QPD. Beginning with the same basis functions

{1, log(p),− log(1 − p)} and applying a logit transform yields the equation for the

coefficients β̃.

β̃ =


1 log(0.1) − log(1− 0.1)

1 log(0.5) − log(1− 0.5)

1 log(0.9) − log(1− 0.9)


−1 

log
(

0.1
1−0.1

)
log
(

0.4
1−0.4

)
log
(

0.8
1−0.8

)
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Figure 4.4: A logit-transformed QPD with finite support

Figure 4.4 shows this transformed QPD and its (0, 1) support. Its quantile function

is Q(p) = L(−0.41 + 0.82 log(p) + 0.82(− log(1 − p))), where the function L(x) =

exp(x)/(1 + exp(x)). It shows a distribution whose PDF has a very different shape

from those in Figures 4.1 and 4.3. The appropriate method for engineering the sup-

port of a probability distribution is the one that the decision maker declares as an

appropriate representation of her knowledge. Transforming a QPD allows one to

achieve the desired support while passing through the assessed quantiles. See Table

4.1 for some more useful transforms that control support. Recall from Corollary 2

that the pPDF of a transformed quantile function requires an additional transform

f(Q̃(p)) = f(Q(p))/(h−1)′(Q(p)). Table 4.2 details the effects of various transforms

on a probability distribution’s pPDF.

Applying a transform to the quantile function of a QPD is the last tool for encod-

ing continuous uncertain quantities with well-defined limits. Occasionally, a decision

maker might not want to assign precise limits. The next chapter introduces a theory
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Table 4.1: Some useful transforms for controlling support

name h(x) old support new support

positive affine cx+ d, c > 0 [a, b] [ac+ d, bc+ d]

logarithmic log(x) (−∞,∞) (0,∞)

reflected logarithmic log(−x) (−∞,∞) (−∞, 0)

logit log
(

x
1−x

)
(−∞,∞) (0, 1)

probit Φ−1(x) (−∞,∞) (0, 1)

Table 4.2: Transform effects on the pPDF

transform h(·) Q̃(p) pPDF f(Q̃′(p))

positive affine Q(p)−a
b b · f(Q(p))

logarithmic exp(Q(p)) 1
exp(Q(p))f(Q(p))

reflected logarithmic − exp(Q(p)) 1
exp(Q(p))f(Q(p))

logit exp(Q(p))
1+exp(Q(p))

(1+exp(Q(p)))2

exp(Q(p)) f(Q(p))

probit Φ(Q(p)) 1
φ(Q(p))f(Q(p))

tailored to help a decision analyst think clearly when encoding a probability distri-

bution in the absence of bounds.



Chapter 5

A Theory of Tail Behavior

One can argue that precise bounds for a continuous uncertain quantity might not

naturally exist, or they might not be available because a decision maker simply does

not want to expend the energy to assign them. Regardless, it can be useful for the

decision analyst to encode the decision maker’s probability distribution with one or

more infinite tails. However, an infinite tail of one probability distribution might be

heavier than that of another, adding a wrinkle to probability encoding. This chapter

defines heavier tails and introduces a theory of tail behavior tailored to help a decision

analyst encode a probability distribution with one or more infinite tails.

5.1 Motivating a Theory of Tail Behavior

A decision maker might not want to assign precise limits to a continuous uncertain

quantity, but she may be willing to assign extreme quantiles, thereby giving evidence

as to the tail heaviness of its probability distribution. There are two approaches

to assessing quantiles that lie in the tails of a decision maker’s distribution—those

less than the 10th or greater than the 90th quantiles. The first approach is to ask

quantile-probability assessment questions directly. Spetzler and Staël von Holstein

[61, page 349] note that their probability wheel encoding method has a disadvantage

in direct assessment of the tails of a distribution:

. . . because it is difficult for a subject to discriminate between the sizes of

62
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very small sectors, the wheel is most useful for evaluating probabilities in

the range from 0.1 to 0.9.

Recent work in the field of risk communication for medical decision making addresses

this problem with some graphical techniques for communicating low-frequency events

[14, 71, 19]. Although graphics such as these show promise for probability elicitation,

they remain untested. Since Spetzler and Staël von Holstein’s standard techniques

don’t perform well for rare events, such as those described by the tail of a continuous

probability distribution, they recommend a second approach: create a more detailed

probabilistic model with uncertainties that do not describe low-probability events.

. . . our experience with probability encoding for rare events indicates that

probabilistic modeling is generally more effective than direct encoding.

For example, in order for an event to occur it may be necessary that

a sequence of other events occur. These intermediate events may not

be low-probability events and standard encoding procedures can then be

used.

Their recommendation of adding more distinctions to a model is an expansion of the

decision maker’s frame. Sensitivity analysis is a phase of the decision analysis cycle

that allows a decision analyst to test whether the existing frame merits expansion. A

desideratum, which I will demonstrate in §6.4, is to describe a method that enables

a sensitivity analysis to tail behavior. Having a notion of how sensitive a decision is

to the tail behavior of one of the decision maker’s uncertainties can help an analyst

recommend whether or not to add complexity to a model and also whether or not to

spend resources assessing a rare-event probability. In order to test sensitivity to tail

behavior, one must first have a method for classifying tail behavior.

5.2 Characterizing Tail Behavior

Research on the tail behavior of probability distributions comes from the literature of

nonparametric statistics, specifically the study of rank tests. This research consists of

both asymptotic classifiers and nonasymptotic orderings. Two asymptotic classifiers
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of note include the Parzen [44] and the refined Parzen [52]. To compute the right-

tailed Parzen exponent classifier, rewrite the pPDF of a probability distribution as a

function of the form

f (Q(p)) = L(p)(1− p)α, (5.1)

where the function L(p) is a slowly-varying function, defined as limu→1− L(λp)/L(p) =

1 for all λ > 0. Parzen uses the sign of the exponent α[<] = [>]0 to determine the

three classifications [short] medium [long] tails. Substituting 1 − p for p in equation

(5.1) and taking the limit as p → 0+ gives the left tail classifier. One complaint

regarding this classification is that it does not discriminate between normal and ex-

ponential tails (both are medium-tailed). Schuster addresses this problem with his

refined Parzen classifier, which uses the hazard function as a means of breaking up

the medium tail category into three components: medium-short, medium-medium,

and medium-long.

The nonasymptotic tail characterization methods predate the asymptotic. All of

the methods that follow induce a partial ordering1 over a set of univariate probability

distributions with certain regularity conditions—some involve first and second deriva-

tives and therefore apply only to probability distributions in which these derivatives

are defined.

Definition 10. A binary relation � over a set X is a partial ordering if it meets the

following criteria for all F,G,H ∈ X :

Reflexivity: F � F

Antisymmetry: If F � G and G � F then F is G, written F ∼ G

Transitivity: If F � G and G � H then F � H

Definition 11. Given a partial ordering � over a set X , the binary relation F ≺ G

holds when F � G and G 6� F , F,G ∈ X .

1In decision analysis, a familiar partial ordering of probability distributions is the binary relation
over a set of deals that defines second-order stochastic dominance.
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In contrast to a partial ordering, a total ordering makes the additional requirement

of completeness: either F � G or G � F (or both) for all F,G ∈ X . Because

a partial ordering lacks this requirement, and because all of the tail classifiers that

follow are partial orderings, one can find probability distributions that one or more

of the following three methods cannot order.

In a study of convex transformations of random variables, van Zwet [68, Ch.4]

introduces a binary relation that partially orders a set of probability distributions

F , according to their tail behavior. He defines this relationship by choosing two

probability distributions F,G ∈ F over a given domain; where F [68, pg. 24] is the

subset of univariate probability distributions whose quantile function Q(p) is twice

differentiable, whose second derivative Q′′(p) is continuous, whose first derivative

Q′(p) > 0, and there exist nonnegative integers a and b such that |Q(p)pa(1− p)b| is

bounded for p ∈ (0, 1). The last condition is to ensure that probability distributions

have defined order statistics. Van Zwet defines c-ordering as F ≺c G if and only if

the function QG(F (x)) is convex over I, the support of F . In his definition, F (x) and

G(x) are the respective CDFs of the probability distributions F and G, and QG(p)

is the quantile function of G. Van Zwet goes on to focus on symmetric distributions

and applies his ordering to the domain I = (0.5, 1) using the notation ≺s. The same

index function Q′′(p)/Q′(p) applies to van Zwet’s s-ordering.

Hájek [18, pg.150] uses a different tail function to generate a partial order over H,

the set of symmetric, log-concave probability distributions centered about zero. He

defines a binary relation F ≺H G if and only if the function a(p) = QG(p)/QF (p) is

nondecreasing and nonconstant over the interval (0.5, 1). In his paper, Hájek investi-

gates the relationship between the score function ϕ(p) = −f ′(Q(p))
f(Q(p))

and tail ordering.2

For F,G ∈ H, he shows that if the ratio of score functions ϕG(p)/ϕF (p) between two

probability distributions is nondecreasing, then F ≺s G, which implies that F ≺H G.

Gastwirth [15] uses Hájek’s ratio of score functions as a new partial ordering.

The probability distribution F ≺G G if and only if b(p) = ϕG(p)/ϕF (p) is nonde-

creasing and nonconstant over the interval (0.5, 1). For probability distributions with

2Applying the score function to a cumulative distribution function ϕ(F (x)) yields the Arrow-
Pratt risk aversion function.
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symmetric log-concave densities centered about zero and twice differentiable quan-

tile functions whose second derivative is continuous, Gastwirth ordering implies van

Zwet’s s-ordering implies Hájek ordering. Gastwirth notes that the converse is not

true. The question of which ordering is most useful when considering candidate dis-

tributions for decision analysis remains.

5.3 Defining a Binary Relation for Tail Behavior

Before defining a binary relation that distinguishes whether one probability distribu-

tion has heavier tails than another, it is important to first clarify what heavier tails

means.

Definition 12. The probability distribution G has a heavier right tail than F when

there exists a point x̂ ∈ R such that G(x) < F (x), all x ∈ (x̂,∞). Likewise, the

probability distribution G has a heavier left tail than F when there exists a point

x̂ ∈ R such that F (x) < G(x), all x ∈ (−∞, x̂).

For the purposes of decision analysis, it is not enough to say that G has heavier right

[left] tails than F in the limit when there is no quantile data in a large interval like

p ∈ (0.9, 1). Therefore, I remove the asymptotic classifiers from consideration since

the Parzen and refined Parzen classifiers consider tail behavior only as p→ 1 [p→ 0

for left tails]. In contrast, the van Zwet, Hájek, and Gastwirth orderings apply to an

interval p ∈ (0.5, 1). Unfortunately, the set of probability distributions over which the

van Zwet (F), Hájek, and Gastwirth (H) orderings apply is too restrictive. Decision

analysts do not confine themselves to the use of the symmetric, log-concave distribu-

tions of H, and they do not distinguish distributions with defined order statistics as F
stipulates. Since none of the preceding tail classifiers is satisfactory, I introduce two

new binary relations ≺R and ≺L based on van Zwet ordering. One can apply these

relations to the set D of univariate probability distributions whose quantile function

Q(p) is twice differentiable, whose second derivative Q′′(p) is continuous, and whose

first derivative Q′(p) is positive. See Table 5.1 for a comparison of the various sets of

probability distributions over which the various tail orderings apply. The definition
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Table 5.1: Sets of probability distributions relevant to tail classification

set description tail classification

F Q′′(p) exists and is continuous; van Zwet

Q′(p) > 0;

|Q(p)pa(1− p)b| is bounded for p ∈ (0, 1)

for some nonnegative integers a and b

H Q′′(p) exists and is continuous; Hájek, Gastwirth

PDFs are log-concave

D Q′′(p) exists and is continuous; R ordering,

Q′(p) > 0 L ordering

of these new binary relations uses van Zwet’s function

ζ(x) = QG(F (x)). (5.2)

Definition 13. The probability distribution F ≺R G, for F,G ∈ D when there exist

two points x0, x1 ∈ R such that ζ(x) is convex over x ∈ (x0,∞), ζ ′(x)|x1 > 1, and

x1 ∈ (x0,∞).

Definition 14. The probability distribution F ≺L G, for F,G ∈ D when there exist

two points x0, x1 ∈ R such that ζ(x) is concave over x ∈ (−∞, x0), ζ ′(x)|x1 > 1, and

x1 ∈ (−∞, x0).

These definitions differ from van Zwet’s, Hájek’s, and Gastwirth’s binary relations

in a few other important ways. First, they separate the ordering of left and right tails.3

Second, they do not restrict themselves to the domain p ∈ (0.5, 1). This allows one

to focus only on the tail when comparing two distributions. Finally, they carry an

important implication.

Proposition 20. If F ≺R [≺L]G, then G has heavier right [left] tails than F .

3A note on notation: the results that follow use the convention of making explicit statements for
R-ordering while including the corresponding L-ordering statements in square brackets. The proofs
cover only R-ordering—the L-ordering proofs follow by argument of symmetry.
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Proof. It suffices to show that there exists a point x̂ ∈ R such that F (x) > G(x),

all x ∈ (x̂,∞). By definition of ≺R, ζ ′(x)|x1 > 1, x1 ∈ (x0,∞), and ζ(x) is convex.

Therefore, ζ(x) > x, x ∈ (x1,∞) because ζ(x) is convex and increasing. Let x̂ = x1,

and apply G to both sides of ζ(x) > x to yield F (x) > G(x), x ∈ (x̂,∞).

The binary relation ≺R [≺L] does not form a partial ordering because it lacks an

equivalence relation. Defining the equivalence relation ∼R [∼L] and combining it with

the binary relation ≺R [≺L] creates a partial ordering over the set D. I refer to this

ordering as R-ordering [L-ordering ].

Definition 15. The probability distribution F ∼R G, [F ∼L G], for F,G ∈ D when

there exists a point p0 ∈ (0, 1) such that QF (p) = QG(p) p ∈ (p0, 1) [p ∈ (0, p0)].

In plainer language, any two probability distributions whose CDF has right [left] tails

that are identical over a right[left]-unbounded interval are part of the same equivalence

class.

5.4 Relating R- and L-Ordering to Quantile Func-

tions

Van Zwet shows that the F ≺c G over x ∈ I if and only if the index function

Q′′F (p)/Q′F (p) ≤ Q′′G(p)/Q′G(p) over p ∈ I. Thus, the ratio of the second derivative

of a quantile function to its first derivative serves as an index function for ordering

probability distributions by their tail behavior. As a further consequence, he shows

that Q′′F (p)/Q′F (p) ≤ Q′′G(p)/Q′G(p) if and only if Q′G(p)/Q′F (p) is nondecreasing over

p ∈ I. These same conditions apply to ≺R [≺L] over p ∈ (p0, 1) [p ∈ (0, p0)], and they

can serve as a convenient verification tool for these two binary relations.

Proposition 21. For distributions F,G ∈ D, F ≺R [≺L] G if and only if there

exists points p0, p1 such that Q′′F (p)/Q′F (p) < [>]Q′′G(p)/Q′G(p), p ∈ (p0, 1)[(0, p0)] and

Q′F (p)|p1 < [>]Q′G(p)|p1 , p1 ∈ (p0, 1)[(0, p0)].
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Proof. Begin with the condition that ζ(x) is concave over the interval (x0,∞), where

x0 = QF (p0). This is true if and only if:

d2

dx2
(QG(F (x))) > 0

⇔ d

dx
(Q′G(F (x))f(x)) > 0

⇔ d

dx

(
Q′G(F (x))

Q′F (F (x))

)
> 0

⇔
(

Q′′G(F (x))

[Q′F (F (x))]2
− Q′G(F (x))Q′′F (F (x))

[Q′F (F (x))]3

)
> 0

⇔
(
Q′′G(p)

Q′G(p)
− Q′′F (p)

Q′F (p)

)
> 0, p ∈ (p0, 1).

The third step makes use of the fact that by differentiating QF (F (x)) = x, f(x) =

1/Q′F (F (x)). The fourth step divides by Q′G(F (x)), which must be positive. The last

step sets p = F (x). Continue with the condition ζ ′(x1) > x1, x ∈ (x0,∞), and let

p1 = F (x1). Begin by differentiating ζ(x) = QG(F (x)):

d

dx
(QG(F (x))

∣∣∣∣
x1

> 1

⇔ Q′G(F (x1))f(x1) > 1

⇔ Q′G(F (x1))

Q′F (F (x1))
> 1

⇔ Q′G(p1) > Q′F (p1).

The fourth step uses the fact that Q′F (p) ≥ 0 because F is a probability distribution.

One can prove this proposition for the relation ≺L in an analogous fashion.

Table 5.2 shows some common probability distributions and the functions Q(p),

Q′(p), and Q′′(p)/Q′(p) that one can use in verifying tail ordering according to Propo-

sition 21. Applying the relation ≺R to a set of familiar distributions yields the or-

dering: uniform ≺R normal ≺R logistic ≺R exponential ≺R Cauchy. Figure 5.1

shows the van Zwet index function Q′′(p)/Q′(p) for the normal distribution Φ−1(p)
φ(Φ−1(p))
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Table 5.2: Tail functions for various probability distributions

distribution Q(p) Q′(p) Q′′(p)/Q′(p)

uniform p 1 0

normal Φ−1(p) 1
φ(Φ−1(p))

Φ−1(p)
φ(Φ−1(p))

logistic log( p
1−p) 1

p(1−p)
2p−1
p(1−p)

exponential − log(1− p) 1
1−p

1
1−p

Cauchy tan (π(p− 0.5)) π sec2(x) 2π tan(π(p− 0.5))

0 0.2 0.4 0.6 0.8 1
−10

−5

0
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10
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Q
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p)
/Q
′ (
p)

normal

logistic

Figure 5.1: The van Zwet index function of the normal and logistic distributions

and the logistic distribution 2p−1
p(1−p) . The information in this figure is consistent with

the fact that normal ≺L logistic and normal ≺R logistic. There is one additional

item of note: the index functions Q′′(p)/Q′(p) are themselves quantile functions. In-

deed, each of the distributions shown in Table 5.2, are themselves quantile functions

because they are both nondecreasing and defined for all p ∈ (0, 1). In general, it is

not true that a probability distribution’s index function is a quantile function, but

it is always true for the important class of log-concave probability distributions with

twice-differentiable PDFs.4

Definition 16. A continuous probability distribution F whose PDF f(x) is a log-

concave function is a log-concave probability distribution.

4All probability distributions in Table 5.2 are log-concave except for the Cauchy distribution.
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In mathematical terms, f(θx1+(1−θ)x2) ≥ f(x1)θf(x2)1−θ for all x1, x2 ∈ dom(f)

and θ ∈ (0, 1). Equivalently, d2

dx2
log(f(x)) ≤ 0. A function f(x) is log-concave if

log(f(x)) is concave.

Proposition 22. A log-concave probability distribution has a van Zwet index function

Q′′(p)/Q′(p) that is itself a quantile function.

The proof of Proposition 22 is in the appendix.

5.5 Tail Behavior of QPDs

The probability distribution tail theory introduced in the previous sections leads

to some useful results for QPDs. This discussion begins by studying the tail be-

havior of QPDs whose basis functions are all quantile functions. The following

three propositions refer to a set of continuous, strictly increasing quantile functions

Q1(p), · · · , Qn(p) with corresponding probability distributions F1, · · · , Fn. They ap-

ply when n > 1 and do not address the trivial case where n = 1. See the appendix

for proofs of the following three propositions.

Proposition 23. Let Fi ≺R Fn [Fi ≺L Fn] for all i ∈ {1 : n − 1} and let F̃n be

a probability distribution whose quantile function is (
∑n

i=1 βi)Qn(p). If a QPD with

quantile function Q̃(p) = β1Q1(p) + · · ·+ βnQn(p) has coefficients {βi | i ∈ 1, · · · , n}
that are all positive, then F̃ ≺R F̃n [F̃ ≺L F̃n].

Proposition 24. Let F1 ≺R Fi [F1 ≺L Fi] for all i ∈ {2 : n} and let F̃1 be probabil-

ity distributions whose quantile function is (
∑n

i=1 βi)Q1(p). If a QPD with quantile

function Q̃(p) = β1Q1(p) + · · ·+ βnQn(p) has coefficients {βi | i ∈ 1, · · · , n} that are

all positive, then F̃1 ≺R F̃ [F̃1 ≺L F̃ ].

Propositions 23 and 24 give upper and lower tail bounds to any QPD whose basis

functions are quantile functions whenever the basis functions meet specific ordering

conditions and its coefficients are all positive. As an example, the tail behavior of a

QPD with quantile function Q(p) = 3 · (2 + Φ−1(p)) + 2 log
(

p
1−p

)
+ 4(− log(1− p)) is

R-ordered and L-ordered between a normal distribution with mean 18 and variance
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81, (quantile function (3 + 2 + 4) · (2 + Φ−1(p))), and an exponential distribution

whose parameter is 9 (quantile function (3 + 2 + 4)(− log(1 − p))). These bounds

hold because Fnormal ≺R Flogistic ≺R Fexponential. While it is infeasible for a QPD

whose basis functions are quantile functions to have all negative coefficients, it is

possible for such QPDs to have one or more negative coefficients, for example, the

QPD whose quantile function is Q(p) = log( p
1−p)−Φ−1(p). The following proposition

applies to cases where one or more coefficients of a QPD are negative numbers, with

the added restriction that the heaviest tailed basis function Qn(p) has an infinite

right [left] tail. For this proposition, define the set of indices I+ ≡ {i | βi > 0} and

I− ≡ {i | βi < 0} so that I+ ∪ I− = {1, · · · , n}. Using this notation, one can

write Q̃(p) =
∑

i∈I+ βiQi(p) +
∑

i∈I− βiQi(p), thereby separating Q̃(p) into a positive

weighted sum of quantile functions plus a negative weighted sum of quantile functions.

Proposition 25. Let Fi ≺R Fn [Fi ≺L Fn] for all i ∈ {1 : n− 1} and limp→1Qn(p) =

∞ [limp→0Qn(p) = −∞] meaning Fn has an infinite right [left] tail. If the probability

distribution F̃ has a quantile function of the form Q̃(p) = β1Q1(p) + · · · + βnQn(p),

then there exists a constant κ ∈ R++ such that F̃ ≺R F̃n [F̃ ≺L F̃n], where F̃n is a

probability distribution whose quantile function is κQn(p).

The implication of Proposition 25 is that the probability distribution F̃ is right

[left] tail-bounded by a positively scaled version of its heaviest tailed basis func-

tion Qn(p). One last generalization remains—removing the restriction that the basis

functions are quantile functions. The following three propositions do this, making

statements on tail behavior that apply to any QPD whose basis functions each have a

right [left] tail-matching quantile function that is continuous and strictly increasing.

Definition 17. The quantile function Q(p) right [left] tail-matches a QPD basis

function g(p) when there exists a point pt ∈ (0, 1) such that g(p) = Q(p), all p ∈
(pt, 1) [(0, pt)].

A tail-matching quantile function will exist for any basis function whose right

[left] tail p ∈ (pt, 1) [(0, pt)] is nondecreasing in p. Therefore, a tail-matching quantile

function will not exist for all basis functions, for example, g(p) = sin(πp), p ∈ (0, 1)
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does not have a right tail-matching quantile function. A remedy is to redifine g(p) =

− sin(πp), leaving its QPD unchanged, except for a corresponding sign change to the

coefficient that multiplies it. Although basis functions exist that negation will not

remedy, like g(p) = sin
(

1
1−p

)
, or g(p) = sin

(
1
p

)
, it is difficult to imagine a reason to

choose such functions as basis functions.

Propositions 26, 27, and 28 take a QPD F with quantile function Q(p) and ba-

sis functions gi(p), · · · , gn(p). Each basis function has continuous, strictly increas-

ing right [left] tail-matching quantile functions Q1(p), · · · , Qn(p) with corresponding

probability distributions F1, · · · , Fn.

Proposition 26. If Fi ≺R Fn [Fi ≺L Fn] for all i ∈ {1 : n − 1}, and the coeffi-

cients βi > 0, i ∈ {1 : n}, there exists a point p0 ∈ (0, 1) such that

Q(p) < (
∑n

i=1 βi) gn(p), p ∈ (p0, 1) [(
∑n

i=1 βi) gn(p) < Q(p), p ∈ (0, p0)].

Proposition 27. If F1 ≺R Fi [F1 ≺L Fi] for all i ∈ {2 : n}, and the coefficients βi >

0, i ∈ {1 : n}, there exists a point p0 ∈ (0, 1) such that

(
∑n

i=1 βi) g1(p) < Q(p), p ∈ (p0, 1) [Q(p) < (
∑n

i=1 βi) g1(p), p ∈ (0, p0)].

Proposition 28. If Fi ≺R Fn [Fi ≺L Fn] for all i ∈ {1 : n − 1}, and Qn(p) has an

infinite right [left] tail, there exists a point p0 ∈ (0, 1) and a constant κ ∈ R++ such

that Q(p) < κgn(p), p ∈ (p0, 1) [κgn(p) < Q(p), p ∈ (0, p0)].

Propositions 26, 27, and 28 are restatements of Propositions 23, 24, and 25 and

are generalized to apply to basis functions that are not quantile functions, yet behave

like quantile functions in their tails. The proofs of these propositions follow from the

definition of a tail-matching quantile function and Propositions 23, 24, and 25.

To demonstrate Propositions 26 and 27, take the QPD with quantile function

Q(p) = 1+2Φ−1(p)+3pΦ−1(p). This QPD is right tail-bounded by 4(1+2Φ−1(p)) (a

normal distribution with mean 4 and variance 64), and the basis function 4pΦ−1(p).

Note that pΦ−1(p) is not a quantile function because it is decreasing over part of its

domain, but there exist quantile functions that will right tail-match it. To demon-

strate Proposition 25, take the QPD with quantile function Q(p) with basis functions

{1, (p − 1)2,Φ−1(p)}. This theorem implies that there exists a normal distribution

with finite variance κ2 that bounds the right and left tails of Q(p).
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One last result ties this theory of tail behavior to the engineering of QPDs—the

QPD Tails Theorem. This theorem explicitly indicates how to change the tail behavior

of a QPD by adding a basis function. As with the previous three propositions, it takes

Q(p) to be a quantile function of a QPD F with basis functions gi(p), · · · , gn(p). Each

basis function has continuous, strictly increasing right [left] tail-matching quantile

functions Q1(p), · · · , Qn(p) with corresponding probability distributions F1, · · · , Fn,

where Fi ≺R Fn, i ∈ {1 : n− 1}.

Theorem 3 (QPD Tails Theorem). Let gH(p), p ∈ (0, 1) be a continuous function

with right [left] tail-matching quantile function QH(p). Create a new QPD F̃ with

quantile function Q̃(p) by adding the basis function gH(p) to the QPD F ’s set of

basis functions. If limp→1 gH(p)/gn(p) =∞ [limp→0 gH(p)/gn(p) = −∞], then F ≺R
F̃ [F ≺L F̃ ].

Proof.

lim
p→1

gH(p)

gn(p)
=∞

⇔ lim
p→1

gH(p)

κQn(p)
=∞, κ ∈ R++ by Definition 17

⇒ lim
p→1

gH(p)

Q(p)
=∞ by Proposition 28

⇔ lim
p→1

(
1 +

βHgH(p)

Q(p)

)
=∞, i ∈ {1 : n} because βH ∈ R++

⇔ lim
p→1

Q̃(p)

Q(p)
=∞ by definition of Q̃(p)

Since it is given that Q̃(p) is a quantile function, it must be true that βH ∈ R++;

otherwise, Q̃(p) would be decreasing in p across some subinterval of its domain.

Since gH(p) and Q(p) are continuous, so too must Q̃(p) be continuous. Because

Q̃(p) is continuous and limp→1
Q̃(p)
Q(p)

= ∞, there must exist a p0 ∈ (0, 1) such that

Q(p) < Q̃(p), p ∈ (p0, 1), therefore F ≺R F̃ .

The QPD Tails Theorem gives a rule for identifying a basis function that, when
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added to a QPD’s set of basis functions, creates a new QPD with increased right

and/or left tail heaviness. To demonstrate this theorem, take a QPD F with basis

functions {1, (p−1)2,Φ−1(p)}. Create another QPD F̃ by adding log
(

p
1−p

)
so that its

set of basis functions is
{

1, (p− 1)2,Φ−1(p), log
(

p
1−p

)}
. The R-ordering is F ≺R F̃

because limp→1

(
log
(

p
1−p

)
/Φ−1(p)

)
=∞.

5.6 Implications of Transforms on Tail Behavior

A quantile function that is a transform of another quantile function Q̃(p) = h−1(Q(p))

often has different tail behavior than the original quantile function Q(p). Table 5.3

shows that for logistic, power, and exponential transforms, the van Zwet index func-

tion Q̃′′(p)/Q̃(p) is a simple function of the van Zwet index function of the pre-

transformed quantile function Q(p). Happily, this gives a clear interpretation of the

implications for each transform. A logarithmic transform of any probability distri-

bution thickens its right tail, whereas an exponential transform thins its right tail.

Finally, a power transform thickens [thins] its right tail if α > 1, [α < 1]. For exam-

ple, when taking an exponential transform of a QPD, the transformed distribution

has shorter tails than did its pre-transformed distribution.

Table 5.3: Transform effects on tail behavior

transform h(·) Q̃(p) Q̃′(p) Q̃′′(p)/Q̃′(p)

positive affine Q(p)−a
b

Q′(p)
b

Q′′(p)
Q′(p)

logarithmic exp(Q(p)) Q′(p) exp(Q(p)) Q′′(p)
Q′(p) +Q′(p)

power [Q(p)]α α[Q(p)]α−1Q′(p) α−1
Q(p) + Q′′(p)

Q′(p)

exponential log(Q(p)) Q′(p)
Q(p)

Q′′(p)
Q′(p) −

[
Q′(p)
Q(p)

]2

Transforms can be useful when modeling with quantile functions. When choosing

a transform, as when choosing a QPD’s basis functions, a decision analyst should be

mindful of the effect it has on tail behavior. Armed with the tools from this and the

previous two chapters, the focus shifts from characterization to application.



Chapter 6

A Decision Analysis Using

Quantile-Parameterized

Distributions

Perhaps the best way to highlight the usefulness of QPDs is to demonstrate how to

use them in the modeling of a decision. This chapter takes a CEO’s decision through

the decision analysis cycle [23, 26]. It begins with the formulation stage in §6.1 and

§6.2, continues in §6.3 with the evaluation stage, and concludes with the appraisal

stage in §6.4 and §6.5. These final two sections illustrate three methods of decision

model appraisal inspired by the use of QPDs.

6.1 Whether to Market or License a Drug

6.1.1 The Market Alternative

A mid-size pharmaceutical company owns a drug candidate that has recently received

FDA approval. The CEO has a plan for her company to market the drug. She values

76
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this Market alternative for the drug according to the equation

vmarket =
T∑
i=1

m · s(i) · (p− c)
(1 + r)i

. (6.1)

The value measure vmarket is the net present value of profit discounted over T time

periods with discount rate r. The variable m is the initial market size for the drug

candidate.

The market share of the drug s(i) for each period i is the ratio of the number of

prescriptions written for the drug to the total number of prescriptions written for it

and competing therapies. The CEO believes market share will grow each period to

account for a forecasted increase in physician acceptance over time. She models this

market share to begin at zero and grow according to

s(i) = sp · (1− exp(−g · i)). (6.2)

The peak market share sp represents her belief about the highest market share that

the drug would achieve were it to have an infinite patent life. The growth parameter g

represents her belief about the rate that the drug approaches this peak market share.

Figure 6.1 depicts a market share profile for sp = 0.7, g = 0.5 and T = 10.

To encode her prior probability distribution on the growth parameter g, the deci-

sion analyst assesses th, the time until the market share reaches half of its peak, and

then relates it to the growth parameter with the equation g = 1
th

log(2). This changes

(6.2) to

s(i) = sp · (1− 2−i/th). (6.3)

The remaining two variables necessary for determining vmarket, are p, the unit price

paid to the company for each prescription, and c the unit cost per prescription.

Substituting (6.3) into (6.1) yields an equation that separates into two geometric
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Figure 6.1: A market share profile with sp = 0.7, g = 1.5 and T = 10

series and simplifies to

vmarket = m · sp · (p− c) ·

1−
(

1
1+r

)T+1

1− 1
1+r

−
1−

(
1

21/th (1+r)

)T+1

1− 1
21/th (1+r)

 . (6.4)

6.1.2 The License Alternative

Before introducing the drug to market, the company’s business development team

generates a new alternative to license its marketing rights to the drug to a second

company. In exchange for these marketing rights, the licensee will pay an upfront

payment to the CEO’s company, as well as an ongoing royalty payment that is a

fixed percentage of the revenue it garners from the sale of the drug. She values this

License alternative according to the equation

vlicense = u+
T∑
i=1

f ·m · s(i) · p
(1 + r)i

, (6.5)
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Figure 6.2: The CEO’s decision diagram

which simplifies to

vlicense = u+ f ·m · sp · p ·

1−
(

1
1+r

)T+1

1− 1
1+r

−
1−

(
1

21/th (1+r)

)T+1

1− 1
21/th (1+r)

 . (6.6)

The variables T , r, m, sp, and th in (6.5) are the same as those in (6.1). The upfront

payment u and the royalty on revenue f account for the licensing deal terms. The

CEO is uncertain about m, sp, and th. Table 6.1 shows her input values for all other

model parameters. The CEO must decide whether to Market or License the drug;

Figure 6.2 depicts her decision.

Table 6.1: The CEO’s deterministic inputs
time periods, T unit price, p unit cost, c upfront payment, u royalty, f

10 years $500 $15 $75 million 12%

6.2 Encoding Prior Probability Distributions

The decision analyst elicits the CEO’s prior probability distribution over market size,

peak market share, and years to half-peak share as the sets of quantile/probability

pairs in Table 6.2. In addition, the CEO assigns bounds for each uncertainty. Initial

market size must be a nonnegative integer, and peak market share must be limited

between 0% and 100%. She also asserts that the number of years to half-peak share

would never be less than one year. She does not want to expend time thinking about
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precise upper bounds for market size and years to half-peak share, so the decision

analyst pencils in “very large” for these two values. She agrees that the decision

analyst should model the number of prescriptions sold in any period as a nonnegative

real number rather than a nonnegative integer. This allows him to use continuous

probability distributions to represent her knowledge about these three uncertainties.

The analyst chooses the set of basis functions {1,Φ−1(p), pΦ−1(p)} for market size.

Table 6.2: The CEO’s elicited quantile-probability pairs
Quantile 0.1 0.5 0.9 Lower Limit Upper Limit

Market Size [Rx] 20, 000 50, 000 100, 000 0 very large

Market Share 60% 75% 90% 0% 100%

Years to Half-Peak 2 3 5 1 very large

By equation (3.5), the QPD Q(p) = 50 + 21.5Φ−1(p) + 19.5pΦ−1(p), in units of 1, 000

annual prescriptions, is consistent with the CEO’s quantiles, but it does not conform

with her limits because it allows for negative market sizes. After discussion, she

chooses the truncated quantile function (6.7) shown in Figure 6.3. According to §4.3,

this quantile function is the QPD whose argument is transformed by the function

p̂ = p · (b − a) + a where b = 1 and the constant a = F (0), which is approximately

a = 0.01.

Q̂(p) = 50 + 21.5Φ−1(0.99p+ 0.01) + 19.5(0.99p+ 0.01)Φ−1(0.99p+ 0.01) (6.7)

Its support (0,∞) is consistent with the upper and lower limits she places on market

size. She feels that this QPD represents her knowledge about market size.

The decision analyst again chooses the set of basis functions {1,Φ−1(p), pΦ−1(p)},
this time for the years to half-peak share uncertainty. Since this uncertain quantity

must lie between one year and a “very large” number of years, he wants a transform

that will give a support of (1,∞). The shifted, log-transformed QPD, with quantile

function

Q̃(p) = exp
(
0.70 + 0.54Φ−1(p)

)
+ 1

gives him a support that agrees with this range and is consistent with the CEO’s
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Figure 6.3: The CEO’s probability distribution over initial market size

quantiles of Table 6.2. The coefficient β3 of the basis function pΦ−1(p) is negligi-

ble. Again, after seeing the CDF and PDF in Figure 6.4, the CEO feels this QPD

represents her knowledge about peak market share.

Continuing with the basis functions {1,Φ−1(p), pΦ−1(p)}, the decision analyst

encodes the peak market share uncertainty. Since market share must lie between 0%

and 100% (0 to 1), he chooses the probit-transformed QPD, with quantile function

Q̃(p) = Φ
(
0.67 + 0.31Φ−1(p) + 0.18pΦ−1(p)

)
to make its support agree with these limits and the CEO’s quantiles. Again, after

seeing the CDF and PDF in Figure 6.5, she feels this QPD represents her knowledge

about peak market share. The decision analyst now has the CEO’s prior probability

distributions encoded and ready for a first-pass analysis.
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Figure 6.4: The CEO’s probability distribution over market growth rate

6.3 Evaluating the Alternatives

The CEO declares that her company has a utility function of the form u(x) =

− exp(−x/ρ). The decision analyst assesses her risk tolerance at ρ = $150 million.

For further reading on a corporation’s risk tolerance, see Howard [24], Spetzler [60],

and Bickel [9]. This information, along with the value functions (6.4) and (6.6) for

each alternative and the CEO’s prior probability distributions, completes her decision

basis. He can now compute her certain equivalent for each alternative. He runs a

probabilistic simulation that converges to the values shown in Table 6.3 within one

million samples. If deciding immediately, she should choose the License alternative.

Table 6.3: The CEO’s certain equivalents
Market License

$85.0 million $86.6 million

She wants to roll up these results into a portfolio analysis to be conducted later
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Figure 6.5: The CEO’s probability distribution over initial market size

in the year. Rather than store this set of two million datapoints, she asks the deci-

sion analyst to compress it for her. He does so using the least-squares approximation

method detailed in §3.7. He takes the million simulates for each alternative and

builds data vectors xMarket and xLicense with ascending orders, and an equally-spaced

probability vector p. Each of these three vectors has one million components. After

choosing a set of basis functions, he builds a matrix Y ∈ Rm×n similar to that of

(3.15), where m is the number of simulates and n the number of basis functions.

He then computes the least-squares approximation βMarket =
(
Y TY

)−1
Y TxMarket

and βLicense =
(
Y TY

)−1
Y TxLicense. He first tries the simple Q-normal basis func-

tions {1,Φ−1(p), pΦ−1(p), p}. He computes a least-squares approximation for the

data with the vectors βMarket and βLicense, but is unsatisfied with the representa-

tion. He adds one more basis function to the set giving a five-coefficientQ-normal

{1,Φ−1(p), pΦ−1(p), p, p(Φ−1(p))2}, yielding the QPDs with quantile functions

Q(p)Market = 50.1 + 20.0Φ−1(p) + 18.7pΦ−1(p) + 66.2p+ 13.9p(Φ−1(p))2 (6.8)
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and

Q(p)License = 81.2 + 2.48Φ−1(p) + 2.32pΦ−1(p) + 8.19p+ 1.71p(Φ−1(p))2 (6.9)

whose units are millions of dollars. This is a QPD representation (Figures 6.6 and 6.7)

that satisfies both him and the CEO. For clarity, only 50 of the million value simulates

for each alternative are shown as points on the CDF plot. This compression reduces

the simulation data representing the probability distribution over the CEO’s value

of each alternative from two million down to just ten numbers—five coefficients for

each alternative. As a check, he generates one million simulates from each of these

two QPDs and uses the data to compute her certain equivalent for each alternative.

Table 6.4 shows that the approximation is a very good one—accurate to the nearest

$100,000. As an added benefit, this QPD representation allows for a smooth PDF

representation for her probability distribution over value for each alternative. The

Table 6.4: The CEO’s certain equivalents computed from compressed simulation
output

Market License

$85.0 million $86.6 million

0.055% difference 0.002% difference

CEO expresses a desire to retain more information than just the probability distribu-

tions over value. She notes that one strategic decision for her drug portfolio is how

much to invest in brand marketing—an intervention that is relevant to peak market

share, but is irrelevant to profit given peak market share. The decision diagram of

Figure 6.8 depicts her branding decision. The decision analyst already has marginal

distributions for both uncertain quantities described by equations (6.8) and (6.9),

so he decides to encode the relevance relationship between peak market share and

profit by way of a Gaussian copula. This copula is parameterized by a single num-

ber ρ = 0.234, which he computes from the n = 1 million simulated peak market

share-value pairs (s, v) ∈ Rn×Rn using the following steps:

1. s
Q−1
s−→ ps ∈ Rn
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Figure 6.6: The CEO’s distribution over the Market alternative represented by com-
pressed simulation output

2. v → pv ∈ Rn

3. ps
Φ−1

−→ x; v
Φ−1

−→ y, x, y ∈ Rn

4. ρ = (x−mx)
T (y −my) , where mx = 1

n

∑n
i xi and my = 1

n

∑n
i yi

The first step iteratively computes the cumulative probability for each peak market

share simulate by finding the argument ps that balances the equation Q(ps) = s. The

second step estimates the cumulative probability of each component of the simulated

value vector pv through the equation pvi = rank(vi)/(n + 1). Both value functions

(6.4) and (6.6) are strictly increasing in the same vectors of simulates m,s, and t,

therefore pvmarket = pvlicense , which also implies ρmarket = ρlicense. The third step

computes two vectors of standard normal variables x = Φ(s) and y = Φ(v). The

fourth step computes the maximum likelihood estimator for the Pearson correlation

coefficient ρ. The quantities mx and my are the averages of the components of the x

and y vectors, respectively.
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Figure 6.7: The CEO’s distribution over the License alternative represented by com-
pressed simulation output

The decision analyst returns to the simulation output data and computes the

CEO’s certain equivalent conditioned on each peak market share decile. Then, using

equations (6.8), (6.9) and the copula, he samples from each value function conditioned

on each decile of peak market share and computes the CEO’s certain equivalent. Table

6.5 compares the original simulation output and the approximated output. Both the

decision analyst and the CEO feel that the approximation is acceptable.

6.4 Sensitivity Analysis

Sensitivity analysis is an important component of the appraisal phase of the decision

analysis cycle. It highlights how certain equivalents change with changes to the

decision model’s parameters. Rather than conduct traditional sensitivity analyses to

model parameters such as discount rate or risk tolerance (analyses unhindered by the

use of QPDs), this section introduces what I believe to be a new sensitivity analysis
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Figure 6.8: The CEO’s future brand campaign decision

Peak Mkt. Share Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

CE Mkt. Orig. [$mm] 63.76 72.91 77.27 80.64 83.92 87.38 90.90 94.70 98.89 104.10

CE Mkt. Approx. [$mm] 67.42 74.64 78.27 81.66 84.45 87.65 90.80 94.21 98.97 108.14

Difference [%] 5.7 2.3 1.8 1.6 0.79 0.43 0.073 0.37 0.18 3.9

CE Lic. Orig. [$mm] 83.47 84.76 85.40 85.90 86.38 86.91 87.42 88.01 88.64 89.44

CE Lic. Approx. [$mm] 84.08 85.10 85.59 86.06 86.44 86.89 87.33 87.81 88.48 89.76

Difference [%] 0.74 0.37 0.28 0.24 0.010 0.002 0.11 0.20 0.16 0.36

Table 6.5: The CEO’s original value model and the QPD-copula approxmation to
that model in terms of certain equivalents conditioned on peak market share decile

inspired by the quantile function methods of this research—sensitivity to the tail

thickness of an input probability distribution.

In §5.1 I discuss why it is desirable to have a method for testing a decision model’s

sensitivity to the tail behavior of an input distrubtion. Imagine that QPD describes a

decision maker’s probability distribution over a specific uncertainty, for example, the

QPD with quantile function Q(p) = 50 + 21.5Φ−1(0.99p + 0.01) + 19.5pΦ−1(0.99p +

0.01) of (6.7), the CEO’s distribution over market size. I submit two methods for

conducting such a sensitivity analysis on this probability distribution. One method

is to add a fourth degree of freedom to the original QPD by adding a fourth basis
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Figure 6.9: Sensitivity to the tail behavior of the market size uncertainty

function g4(p). Then the decision analyst can recompute her certain equivalents after

modulating a fourth, extreme quantile. If the addition of this fourth quantile adheres

to the requirements of the Quantile Parameters Theorem, the resulting QPD will

still pass through the three quantiles from the original analysis. As an alternative

approach, he can transform the QPD in such a way as to make the tail lighter or

heavier. Table 5.3 shows that the tail index of a distribution power-transformed

by the exponent α is α−1
Q(p)

+ Q′′(p)
Q′(p)

. Thus, the tail-heaviness of a power-transformed

distribution is strictly increasing in α, making the power transform a systematic

means of modulating the tail-heaviness of any QPD.

The decision analyst decides to use the power-transform method for a sensitiv-

ity analysis on the right tail behavior of the CEO’s distribution over market size,

Q(p) = (50 + 21.5Φ−1(0.99p+ 0.01) + 19.5pΦ−1(0.99p+ 0.01))
α
. Figure 6.9 graphs

the results of this study for the exponents α from 0.5 to 7 by increments of 0.5.

Rather than using the tail exponent α as the dependent variable, he chooses to plot

the certain equivalents of each alternative versus the 99th quantile of the transformed

distribution. This clarifies his communication of this analysis to the CEO.

Figure 6.10 plots the CDFs and PDFs of both the input distribution (α = 1) and
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Figure 6.10: CDF and PDF of the initial distribution on the market size uncertainty
and the distribution with exponent α = 7

the heaviest-tailed distribution (α = 7). From this study, it is clear to the CEO that

spending further time detailing the tail of the market size uncertainty is unwarranted.

Figure 6.10 shows that the transformed distribution changes more than just the

shape of the tail. The difference is barely perceptible. If the CEO was concerned

with this change in the central portion of the distribution, the decision analyst could

create a hybrid distribution with the same tail modulation parameter α:

Q̃(p) =



50 + 21.5Φ−1(0.99p+ 0.01)

+19.5(0.99p+ 0.01)Φ−1(0.99p+ 0.01) 0 ≤ p < 0.9

(β1 + β2Φ−1(0.99p+ 0.01)

+β3(0.99p+ 0.01)Φ−1(0.99p+ 0.01))α 0.9 ≤ p <∞

(6.10)
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The vector β = Y −1x
1
α , where Y is the same basis function matrix used to compute

the original coefficients for market size. The distribution in (6.10) is identical to

the original distribution for all quantiles less than the 90th. It has a CDF that is

continuous but not necessarily differentiable.

6.5 Valuing Information

Valuing information is another important component of the appraisal phase [22].

Rather than conduct a traditional value of information analysis on one of the three

uncertain distinctions of the model (analyses unhindered by the use of QPDs), I

instead use QPDs to highlight the valuation of a type of information rarely considered

by decision analysts—the valuation of probability assessment.1 This analysis requires

both a decision analyst able to conduct a moderately difficult simulation, and a

decision maker who is comfortable assigning probabilities to abstract quantities—

perhaps this is one reason for the rarity of the valuation of probability assessment in

practice. For a theory on the use of experts in decision analyis, see Morris [41, 42].

For a detailed examination of valuing probability assessment, see Logan [38].

The CEO is aware of a market research firm whose specialty is predicting the

market size of drugs about to enter the market. The firm has an expert in the

market sizing of drugs similar to the one of this decision. The service comes at a

cost; for $200, 000, the expert will perform a thorough market analysis and assign

his (0.1, 0.2, . . . , 0.8, 0.9)-quantiles on market size. This feels expensive to the CEO.

Nevertheless, she asks the decision analyst whether he thinks paying for the expert’s

market size quantiles is a good deal. To answer this question, he performs an analysis

to determine whether or not the CEO should purchase this every-decile assessment.

When conducting such an analysis, it is important to recognize that different

assignments of probabilities and quantiles might be inconsistent, reflecting a lack of

information. Two extensive literature reviews on probability judgment and assess-

ment are Slovic, Fischoff, and Lichtenstein [56] and Wallsten and Budescu [67]. In

1I use the term probability assessment to mean the assessment of a decision maker’s uncertainty as
points on a CDF, so that the assessed quantity could either be a quantile or a cumulative probability.
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their paper, Wallsten and Budescu adopt the linear model

x = t+ e. (6.11)

The model describes the relationship between an elicited probability x as the sum of

t, the true probability, and an error term e. On page 153 of their aforementioned

paper, Wallsten and Budescu choose a definition for true probability:

A convenient way to define the true score, t, is as the expected value

of this hypothetical distribution that would be obtained across a series

of statistically independent judgments by a given individual. Thus, true

score is a hypothetical concept which is determined through the observed

value by the expectation operator.

This definition passes the clarity test as defined by Howard [26]. Tani [62, page 1501]

defines a more general notion he calls authentic probability:

Let us imagine the existence of a person, called the Probabilist, who is

capable of performing upon request any calculation using the rules of prob-

ability calculus (e.g., Bayes’ Theorem, expansion, or change of variable).

Then we can state the following operational definition of autheticity: The

authentic probability for an event is the one that we would obtain if we

could spend an unlimited amount of time in introspection and if we had

the services of the Probabilist.

Logan [38, page 25] builds on Tani’s work by introducing a set of axioms “sufficient

for the existence and uniqueness of an authentic probability distribution.”

Logan bases his work on the idea that one can value probability assessment in the

same way one values information. For univariate continuous probability distributions,

he proposes valuing assessment over the first four central moments of the distribution

[38, page 67]. But Spetzler and Staël von Holstein contend “Subjects are seldom able

to express their uncertainty in terms of a density function, a cumulative distribution,

or moments of a distribution. Therefore, it is usually not meaningful to try eliciting a

distribution or its moments directly” [61, page 351]. One key desideratum of a process
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for valuing probability assessment is that the assessment data be quantile-probability

pairs. For probability distributions defined by QPDs, quantiles are linear functions

of coefficients, making them well suited to such a valuation.

The example of §6.5.1 uses the quantile-probability assessment data of Spetzler

and Staël von Holstein. This section uses their V-method of elicitation—fixing a

probability and assessing its associated quantile. Abbas et al. [5] compare what they

call fixed value versus fixed probability (V-method). They slightly favor fixed value

elicitation. In this section on valuing probability assessment, I adapt the linear model

of Wallsten and Budescu and propose a definition for the coefficients β that passes

the clarity test.

6.5.1 Modeling the Expert’s Responses

In order to value the market-sizing expert’s quantiles on market size, the decision an-

alyst first creates a model (6.12) that describes the CEO’s knowledge about the result

of such an assessment. This model uses the set of basis functions {1,Φ−1(p), pΦ−1(p)},
the same as the QPD describing the CEO’s knowledge about the market size uncer-

tainty from Table 6.2.

xi = β1 + β2Φ−1(pi) + β3piΦ
−1(pi) + εi (6.12)

Each pi-quantile the expert assigns is xi, and the term εi accounts for the expert’s

inconsistency in making his assignment of the ith quantile. She believes that the

expert might give slightly different answers to the same quantile assessment question

asked at different times. This is equivalent to Wallsten and Budescu’s error term e

from (6.11). The CEO believes all such inconsistencies εi are irrelevant to one another

and distributed normally with mean 0 and uncertain variance σ2. Further, the CEO

believes that the (p1, . . . , pm)-quantile data (x1, . . . , xm) elicited from the expert are

irrelevant given σ and β.

Similar to Wallsten and Budescu, and Tani, the decision analyst defines the ex-

pert’s probability distribution over market size as the QPD with the aformentioned

basis functions whose vector of coefficients β is the answer to the question, “What
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Figure 6.11: The CEO’s relevance diagram describing the expert’s quantiles on the
market size uncertainty

vector of coefficients β ∈ R3 is the least-squares estimator of a set of one thousand

quantile assessments the expert would assign to the decision analyst were they to take

the time to do so?” Since the clairvoyant can make this computation and answer this

question, the CEO and decision analyst agree that it passes the clarity test.

Figure 6.11 depicts these probabilistic relationships. If the CEO were to observe a

set of expert-assessed quantiles {xi | pi, i ∈ 1 : m}, she would update the coefficients

β of her probability distribution over market size whose quantile function is

Q(p̂) = β1 + β2Φ−1(p̂) + β3p̂Φ
−1(p̂), (6.13)

and the p-transform

p̂ = (1− F (0)) p+ F (0) (6.14)

truncates the distribution so that its support is (0,∞), in accordance with §4.3. As a

consequence of the model given by (6.12) and its following paragraph, the likelihood

function for the quantile data vector x given p, σ, and β is:

P{x|p, σ, β} ∝ σ−m exp

(
− 1

2σ2
(x− Y β)T (x− Y β)

)
, (6.15)

where the matrix

Y =


1 Φ−1(p1) p1Φ−1(p1)
...

...
...

1 Φ−1(pm) p̂mΦ−1(pm)

 , (6.16)
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has the form of (3.6), and m is the total number of quantiles assessed from the expert.

One can think of this model as a Bayesian linear regression, where the regression

function (6.12) has the form of the normal linear model y = βTx+ ε. Two early texts

that cover Bayesian linear regression are Raiffa and Schlaifer [48] and Zellner [70].

Both show that the likelihood function (6.15) has conjugate prior distributions:

1

σ2
∼ gamma

(
a = ν0/2, b = ν0s

2
0/2
)

(6.17)

and

β|σ ∼ N
(
µ = β0,Σ = σ2

(
Y T

0 Y0

)−1
)
. (6.18)

There are various methods of indirectly assessing the parameters ν0, s2
0, β0, and

Y0 of these conjugate prior distributions. For example, Kadane et al. [32] elicit quan-

tiles over the independent variable (the market size quantile of this example), given

fixed independent variable(s) (the cumulative probability p, in this example). The

conjugate Bayesian regression model assumes that the domain of the n-dimensional

vector β is Rn. However, according to Proposition 15, the feasible set of vectors Sβ of

a QPD is always a proper subset of Rn. Therefore, this method of valuing probability

assessment will never enjoy a Bayesian linear regression model with conjugate priors.

Figure 6.12 shows the feasible region for β2−β3 of the family of QPDs chosen for the

expert’s distribution over market size. The feasible region for the location parameter

β1 is always the real numbers.

6.5.2 Assessing Prior Distributions on Coefficients

The model is now well-structured, but a difficulty remains in assessing a prior prob-

ability distribution on β from (6.13)—it is not easy to think about the probabilistic

relationships between β1, β2, and β3. To address this, the CEO and decision analyst

agree to simplify the model from 6.11 through two steps. First, the CEO declares

that σ, the standard deviation of the error term ε, is irrelevent to the coefficients

β, because observing β will not change her probability distribution on σ. Second,

the CEO asserts that while observing a set of the expert’s quantiles on market size
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Figure 6.12: The feasible β2 − β3 region for the family of QPDs with basis functions
{1,Φ−1(p), pΦ−1(p)}

may change the median and interdecile range (0.9-quantile minus 0.1-quantile) of her

distribution, it will not change its shape. Equivalently, without the x-axis labels, her

posterior distribution will be indistinguishable from Figure 6.5, her prior distribu-

tion. Moreover, observing the expert’s median will not change her distribution over

his interdecile range. In response to these thoughts, the decision analyst changes the

normal linear model (6.12) to

xi = θ1 + θ2

(
Φ−1(pi) +

10

11
piΦ

−1(pi)

)
+ εi. (6.19)

He then reformulates the CEO’s probability distribution over the market size uncer-

tainty of (6.13) into the location-scale family2

Q(p̂) = θ1 + θ2

(
Φ−1(p̂) + (10/11)p̂Φ−1(p̂)

)
, p̂ = (1− F (0)) p+ F (0). (6.20)

2Recall the discussion of location and scale parameters in §2.3.
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Figure 6.13: The CEO’s modified relevance diagram describing the expert’s assessed
quantiles on the market size uncertainty

where the location parameter θ1 = β1, the scale parameter, θ2 = β2, and 10/11

is the ratio β3/β2 computed from the CEO’s quantiles from Table 6.2. This ratio

ensures that the CEO’s posterior probability distribution on market share will have

the same shape as her prior. The relevance diagram of Figure 6.13 depicts this model.

Note that the arc from σ to β that is present in Figure 6.11 is absent in Figure

6.13. Also, there is no arc between θ1 and θ2, indicating that these distinctions are

irrelevant given her current state of knowledge. Finally, the β uncertainty node from

Figure 6.11 is now a deterministic node, recognizing the new functional relationship

(β1, β2, β3) = (θ1, θ2,
10
11
θ2) that (6.20) implies.

Recall that the CEO is uncertain about the median and interquartile range of

the expert’s quantiles on the market size uncertainty. By (6.20), the expert’s median

on market size equals θ1 plus the zero mean, normally distributed error term ε. He

creates the clarity test definition for θ1 as the answer to the question, “What median

will the expert assign for the market size uncertainty?” After assessing the CEO’s

quantiles on θ1, the decision analyst encodes the CEO’s knowledge as the normal

distribution with µθ1 = 50, and σ2
θ1

= 25 whose PDF Figure 6.14 depicts.

Also by (6.20), the expert’s interdecile range on market size approximately equals

3.5θ2 plus a normally distributed error term that has mean zero and double the
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Figure 6.14: The CEO’s prior on the location parameter θ1 of the expert’s probability
distribution for market size

variance of ε. He creates the clarity test definition for θ2 as the answer to the question,

“What interdecile range will the expert assign for the market size uncertainty?” The

PDF

f(x) =
2bac2a

Γ(a)x2a+1
exp

(
−b
( c
x

)2
)
, x > 0, (6.21)

characterizes the inverse-squareroot-gamma distribution with scale parameter c. See

Zellner [70, pages 371–373] for more information on this distribution—he terms it an

“inverse gamma” distribution. Zellner examines this distribution because it is the

conjugate prior on the standard deviation σ of the error term ε of a Bayesian linear

regression. After assessing the CEO’s quantiles on her uncertainty about the expert’s

interdecile range and dividing them by 3.5, the decision analyst encodes the CEO’s

probability distribution on the scale parameter θ2 as an inverse-squareroot-gamma

distribution with parameters aθ2 = 22, bθ2 = 1, and cθ2 = 100. Figure 6.15 depicts

the CEO’s PDF on θ2.

In order to be consistent with the CEO’s original probability distribution on mar-

ket size, E[θ1] and E[θ2] should be 50 and 21.5, respectively. These are the values for

β1 and β2 from the CEO’s original quantiles on market size. Her distributions’ first

moments are E[θ1] = 50 and E[θ2] = 21.7—an acceptably small deviation.

The third and final assessment is the CEO’s knowledge about σ, the standard
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Figure 6.15: The CEO’s prior on the scale parameter θ2 of the expert’s probability
distribution for market size

deviation of the error term ε in (6.19). He creates the clarity test definition for σ

as the answer to the question, “What is the sample standard deviation from two

or more conditionally irrelevant median assessments on market size that the expert

would assign?” Once again, he uses the CEO’s quantiles on σ to parameterize the

inverse-squareroot-gamma distribution with aθ2 = 2, bθ2 = 5, and cθ2 = 1.25. Figure

6.16 depicts the CEO’s PDF on σ.

Now the decision analyst is ready to value assessing the expert’s market size

deciles. Such an assessment is material to the CEO’s decision whenever a possible

assessment exists that might change her distribution on market size such that the

CEO changes her decision from License to Market. The CEO will first decide whether

or not to pay for the expert’s services. After updating her distribution on market size

with these new quantile assessment data, the CEO will make her decision whether to

Market or License the drug. Figure 6.17 depicts her modified decision situation.

Because this normal linear model lacks conjugate priors, the decision analyst must

simulate her valuation of the expert’s quantiles on market size. He first draws 10, 000

samples from the pre-posterior distribution, which is the CEO’s marginal distribu-

tion over the quantiles x̃|p he might elicit from the expert. He then draws 1, 000

samples from her posterior distributions of the location parameter θ1 and the scale

parameter θ2, given each set of pre-posterior quantile assessment data x̃|p by way
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Figure 6.16: The CEO’s prior on the standard deviation σ of the expert’s assessment
inconsistency ε

of the Metropolis-Hastings algorithm.3 Next, he computes her expected utility for

Market and License by simulating from years to half-peak share, peak market share,

and market size and recording the alternative with the highest expected utility. He

repeats this process for each posterior θ1|x̃, p and θ2|x̃, p that he simulated previously.

He takes the expectation of these utilities over all θ1, θ2|x̃, p to compute an expected

utility for valuing the expert’s deciles.

Since hers is a delta-property utility function [4][23, pages 214–215], her value of

probability assessment is the difference between her value of free probability assess-

ment minus her original certain equivalent for the License alternative—a difference

that is approximately $2.3 million. The expert’s $200, 000 fee, once regarded as expen-

sive, is clearly a good deal. The decision analyst recommends that the CEO contract

the expert’s services, update her distribution on market size given his deciles, and

choose the best alternative given her new information.

3The Metropolis-Hastings algorithm is a method that belongs to the Markov Chain Monte Carlo
class of probabilistic simulation. Gelman et al. [16] give advice for tuning this algorithm.
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Figure 6.17: The decision diagram for valuing probability assessment

6.6 Summary

This elementary decision analysis shows the power of the QPD toolkit. It demon-

strates the encoding of prior probability distributions using quantile-probability data,

whether or not the underlying uncertain quantity has well-defined bounds. It high-

lights the ability of QPDs to represent a large number of quantile-probability points,

such as the output of a probabilistic simulation, with very few coefficients. The sen-

sitivity analysis shows a method of using QPDs and the theory of tail behavior to

demonstrate the robustness of the License alternative to changes in the tail-heaviness

of the CEOs distribution on market size. It shows how QPDs can ease the valuation

of probability assessment by using quantile-probability data.
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Conclusion

7.1 Summary

Quantile-parameterized distributions are a new class of probability distributions that

are both readily parameterizable by quantiles and amenable to discretization and

probabilistic simulation. The Quantile Parameters Theorem is a key result, showing

the conditions required for parameterizing a QPD using quantile-probability pairs.

Another important characteristic of a QPD is its region of parametric feasibility.

While infeasible parameters always exist, the feasible parametric region is convex.

The simple Q-normal distribution serves as a demonstration of these results, and

despite its simplicity, it carries the flexibility to represent a wide range of distributional

shapes. One can parameterize a QPD using overdetermined systems of equations by

minimizing an appropriate norm. One can encode relevance with QPDs by way of

discretization and conditioning, by creating a QPD prior over the coefficients of a

QPD likelihood function, or by relating two QPD marginal distributions by a copula.

These methods open the door to probabilistic inference using QPDs.

Continuous uncertain quantities often have well-defined limits. As an example,

the volume of recoverable oil in a reservoir cannot be less than zero. In such cases,

the decision analyst desires a probability distribution that reflects these limits. The

QPD support thepborem shows the effect that a particular set of basis functions has

on the support of a QPD. One can engineer the support of a QPD using the following

101
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three methods. The first is to set up a constrained optimization problem to solve

for a QPD’s coefficients. The QPD resulting from this method will pass through

the extreme quantiles, but it is not guaranteed to pass through the original quantile-

probability points. The second is to control support through truncation. When using

this method, the coefficients need not be recalculated, and probabilistic simulation is

possible through rejection sampling. However, the resulting QPD is not guaranteed

to pass through the quantile-probability points and the chopped-off tails may be a

poor representation of the decision maker’s beliefs. The third method is to create a

transformed QPD. The probability distribution resulting from this method must pass

through both the extreme and intermediate quantiles. This does not mean that it

is always the best approach—as with any probability encoding process, the encoder

should present the candidate probability distribution to the decision maker in order

to verify that it is an acceptable representation of her beliefs.

When continuous uncertain quantities do not have well-defined limits, an alter-

native to extreme quantile assessment is to allow a distribution to have infinite right

and/or left tails. The heaviness of the infinite tail of a decision maker’s probability

distribution may be material to her decision. There are four key contributions of this

section. The first is a definition of what it means for one probability distribution to

have heavier tails than another. The second is the binary relation over the set of

univariate probability distributions with twice differentiable quantile functions (R-

and L-ordering.) These orderings imply relative tail heaviness—if F ≺R [≺L]G, then

G has a heavier right [left] tail than F . The third is a set of tail bounds for any

QPD with positive coefficients. The fourth contribution is the QPD tails theorem—a

statement showing how to choose a new basis function, which, when added to a set

of basis functions, is guaranteed to result in a QPD with heavier tails.

The pharmaceutical company CEO’s market versus license decision demonstrates

the use of QPDs in a decision analysis. All prior probabilities are encoded using QPDs,

both truncated and transformed to be consistent with the limits of each variable.

The key results from the analysis are three novel QPD-based methods for decision

analysis. The first is a data compression method that encodes the information from

the probabilistic simulation over the peak market share–value joint distribution—one
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that reduces four million datapoints to eleven parameters. The second is a sensitiv-

ity analysis to tail heaviness that shows the decision maker whether the right tail

heaviness of the market share uncertainty is material to her decision. The third is a

valuation of probability assessment, which not only shows the decision analyst what

it is worth to assess further quantiles, but also shows how to apply probabilistic

inference using QPDs.

7.2 Areas for Future Research

7.2.1 Promising Directions

The areas for future research span a few different disciplines. The first is in the

field of artificial intelligence—specifically automated probability encoding systems

for continuous uncertain quantities. Recall that this dissertation offers no axioms

for the selection of basis functions. Instead, it identifies support and tail behavior

as the important characteristics to consider when choosing a probability distribution

consistent with quantile-probability data, and it shows how the choice of basis func-

tions and transforms influence these two characteristics. Using this theory, one might

also consider an automated system that chooses from a vast library of basis function

candidates based on the input of quantile-probability data, support bounds, and/or

desired tail behavior. A method of choosing such functions is to minimize a sum

squared deviations with a regularization term [11, §6.3.2] that is the sum of absolute

values of the components of the coefficient vector. A mathematical formulation of

this problem is

β̂ = argminβ{‖Y β − x‖2 + γ‖β‖1},

where ‖v‖p is the p-norm of a vector v. In the statistical literature, this approach has

the name “lasso” regression [63]. The regularization term γ‖β‖1 serves as a heuristic

for reducing the number of basis functions by setting various components of β to

zero. As a related method, support vector regression [59] also holds promise for the

automated selection of basis functions.
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A second research area is empirical research characterizing the probability elici-

tation of rare events using new graphics. The development of methods for debiasing

and assessing extreme quantiles would allow for a better selection of basis functions to

represent tail behavior. In addition, a characterization of the error of various meth-

ods of assessing extreme quantiles might lead to better models for valuing probability

assessment. Other empirical research of value is the development and characteriza-

tion of the verification stage of any quantile-probability based probability encoding

method by using QPD-generated PDFs as feedback rather than CDFs.

A third area is further characterization of how sets of basis functions relate to

parametric feasibility. Since the simple Q-normal covers such a diversity of distribu-

tional shapes, I spent little time characterizing the parametric coverage of different

sets of basis functions. One possible measure of such coverage is the volume of the

convex set of feasible normalized quantiles like the r1−r2 space of Chapter 3. Further

study of various sets of basis functions may yield insight about how to choose basis

functions for various continuous uncertain quantities. Research comparing the quan-

tile coverage of QPDs to four parameter distributions from the canon of commonly

used probability distributions, such as the Pearson family, may stimulate the use of

QPDs in research and in the practice of decision analysis.

The last promising research area of note deals with the theory of tail behavior

detailed in Chapter 5. One path for future research is finding tighter bounds for

the tail behavior of QPDs. Another is in relating parametric feasibility to the tail

behavior of QPDs. Yet another is in the study of the function Q′′(p)/Q′(p). It is

curious that the Cauchy distribution is invariant under the Q′′(p)/Q′(p) operation. It

is also curious that Q′′(p)/Q′(p) is a quantile function for more than just log-concave

probability distributions with quantile function Q(p). Exploring these curiosities may

lead to useful results.

7.2.2 Culs-de-sac?

Perhaps every Ph.D. student culls promising paths of research in the interest of com-

pleting his or her dissertation. This research is no different—there is much litter on
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the cutting room floor. In the goal of advancing human knowledge, it is important

to identify halted research, as well as research success.

The function Q′′(p)/Q′(p) has a relationship to the unimodality of QPDs. I

spent time investigating why QPDs like the simple Q-normal seem to yield unimodal

distributions—especially compared with mixture distributions of CDFs. I have no

general statements to make about the unimodality of QPDs at the time of this writ-

ing. Research into the source of what makes certain QPDs tend to be unimodal may

help in choosing basis functions.

Another investigation that did not make the cut is that of quantile-parameterized

utility. Abbas and Matheson introduce the notion of utility-probability duality to

show (for continuous, increasing utility functions whose image is the unit interval) that

the best of a set of alternatives has both the highest expected utility
∫
x
U(x)dF (x) and

the lowest expected disutility
∫
x
F (x)dU(x) [7]. Many years earlier, Borch [10] applied

a duality approach equivalent to Abbas’s and Matheson’s to show how a decision

maker seeking to minimize his probability of ruin over a sequence of deals induces his

utility function. Indeed, parallels between utility and probability appear frequently

in economic and decision analytic literature. Abbas and Howard use probability

concepts like information entropy and Bayes’s theorem to infer a decision maker’s

utility function from a finite set of utility assessments [3, 6]. The very foundations of

decision theory and decision analysis are axiomatized in a way that expresses utility

in terms of an indifference probability between two uncertain deals and treats it as

a probability (continuity axiom of von Neumann and Morgenstern [66], Howard’s

equivalence and substitution rules [27, 28]). Given this history of parallels between

probability and utility, it follows that one might apply a quantile-parameterized utility

approach (QPU) to encode a decision maker’s risk preference much as one applies a

QPD approach to encode his beliefs. This is indeed possible, but the QPU approach

tends to perform poorly compared to positive linear combinations of utility functions,

at least in one of the three desiderata applied most often to utility functions:

1. the decision maker’s utility function is strictly increasing in wealth, U ′(x) > 0;

2. the decision maker is risk averse over monetary prospects, U ′′(x) < 0;
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3. the decision maker’s risk aversion function −U ′′(x)/U ′(x) is strictly decreasing

in wealth.

Take the inverse utility function Û−1(υ) = β1U
−1
1 (υ) + · · · + βnU

−1
n (υ), where the

basis functions are the inverse functions of utility functions that each meet the three

desiderata. While Û meets the first two desiderata, it is not guaranteed to meet

the third. However, a positive weighted sum of those basis utility functions Ũ(x) =

β1U1(x) + · · ·+ βnUn(x), meets all three.

The question mark in the title of this subsection indicates that these research

directions may not be dead ends. These, along with the research directions of §7.2.1,

may lead to results important to the theory and practice of decision analysis. Indeed,

I hope this proves to be so.



Appendix A

Selected Proofs

Proof of the QPD Support Theorem (Theorem 2). This proof relies on the fact that

a QPD consists of a regular set of basis functions (definition 7).

Begin with item 1. If Xi is a finite interval for all i ∈ {1 : n}, then the quantile

function Q(p) of QPD F is a linear combination of finite numbers, therefore Q(p) is

finite for all p ∈ (0, 1) and β ∈ Rn. By Proposition 19, supp(F ) is finite.

If supp(F ) of a QPD is finite, by Proposition 19, a linear combination of its basis

functions is finite for all p ∈ (0, 1) and β ∈ Rn. Because a QPD’s set of basis functions

is regular, it is impossible for a linear combination of two basis functions with infinite

tails to cancel each other out. This implies each of its basis functions must map to a

finite interval for all p ∈ (0, 1).

Continue with item 2. Take a linear combination of all basis functions Xj, j 6= i.

The proof for item 1 shows that the image X̃−i = {
∑

j 6=i βjgj(p) | p ∈ (0, 1), β ∈
Rn−1} is a finite interval. The Minkowski sum of a finite interval (X̃−i) and a semi-

infinite interval ({βigi(p) | p ∈ (0, 1), βi ∈ R}) yields a semi-infinite interval, making

supp(F ) semi-infinite.

Conclude with item 3. For any QPD, limp→0

∑n
i=1 βigi(p) ∈ R or approaches −∞

and limp→1

∑n
i=1 βigi(p) ∈ R or approaches∞. It suffices to show that if the image of

one or more basis functions is (−∞,∞), then the first limit approaches −∞, and the

second limit approaches∞. Proof by contradiction: assume that the first and second

limits belong to the set of real numbers. Because a QPD’s set of basis functions is

107
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regular, the limit of each of its basis functions limp→1 gi(p) ∈ R, for all i ∈ {1 : n} and

p ∈ (0, 1). By the same argument, limp→0 gi(p) ∈ R, for all i ∈ {1 : n} and p ∈ (0, 1).

This contradicts the original statement that the image of at least one basis function

Xi = (−∞,∞).

Proof of Proposition 22. It suffices to show that Q′′(p)/Q′(p) is nondecreasing. By

log-concavity,

d2

dx2
log(f(x)) ≤ 0

⇔ f ′′(x)

f(x)
−
(
f ′(x)

f(x)

)2

≤ 0

⇔ f ′′(Q(p))

f(Q(p))
−
(
f ′(Q(p))

f(Q(p))

)2

≤ 0 , substitute x = Q(p)

⇒ f ′′(Q(p))

f(Q(p))
(Q′(p))2 − 2

(
f ′(Q(p))

f(Q(p))

)2

(Q′(p))2 ≤ 0 , since (Q′(p))2 ≥ 0

⇔ d2

dp2
log(f(Q(p))) ≤ 0

⇔ d

dp
log(f(Q(p))) is nonincreasing

⇔ d

dp
log

(
1

Q′(p)

)
is nonincreasing, using (2.2)

⇔ Q′′(p)

Q′(p)
is increasing

The substitution of x = Q(p) holds because F is a continuous probability distribution

with a twice-differentiable quantile function, therefore Q : (0, 1) → dom(F ) is a

bijection.

Proof of Proposition 23. By Proposition 21, it suffices to show that

1. There exists a point p0 such that Q̃′′(p)

Q̃′(p)
<

d2

dp2
((
∑n
i=1 βi)Qn(p))

d
dp((

∑n
i=1 βi)Qn(p))

, p ∈ (p0, 1)

2. There exists a point p1 such that Q̃′(p1) < d
dp

((
∑n

i=1 βi)Qn(p))
∣∣∣
p1
, p1 ∈ (p0, 1)
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Begin with item 1. Because Fi ≺R Fn, all i ∈ {1 : n− 1} and by Proposition 21, we

know that there exists a point pi0 such that
Q′′i (p)

Q′i(p)
< Q′′n(p)

Q′n(p)
, p ∈ (pi0, 1), i ∈ {1 : n− 1}.

Let p0 = maxi{pi0} and restrict the following equations so that p ∈ (p0, 1):

Q̃′′(p)

Q̃′(p)
=
β1Q

′′
1(p) + · · ·+ βnQ

′′
n(p)

β1Q′1(p) + · · ·+ βnQ′n(p)

=

(
β1Q

′
1(p)∑n

i=1 βiQ
′
i(p)

)
Q′′1(p)

Q′1(p)
+ · · ·+

(
βnQ

′
n(p)∑n

i=1 βiQ
′
i(p)

)
Q′′n(p)

Q′n(p)

<

(
β1Q

′
1(p)∑n

i=1 βiQ
′
n(p)

)
Q′′n(p)

Q′n(p)
+ · · ·+

(
βnQ

′
n(p)∑n

i=1 βiQ
′
i(p)

)
Q′′n(p)

Q′n(p)

=
Q′′n(p)

Q′n(p)

=

d2

dp2
((
∑n

i=1 βi)Qn(p))
d
dp

((
∑n

i=1 βi)Qn(p))

Continue with item 2. By Proposition 21, we know that there exists a point pi1

such that Q′i(p1) < Q′n(p1), p1 ∈ (p0, 1). Let p1 = maxi{pi1}. Show that Q̃′(p1) <

(
∑n

i=1 βi)Q
′
n(p1), p1 ∈ (p0,∞).

Q̃′(p1) = β1Q
′
1(p1) + · · ·+ βnQ

′
n(p1)

< β1Q
′
n(p1) + · · ·+ βnQ

′
n(p1)

=

(
n∑
i=1

βi

)
Q′n(p1).

The second step makes use of the fact that Q′F (p1) < Q′G(p1), p1 ∈ (p0, 1) if and only

if Q′F (p) < Q′G(p), p ∈ (p1, 1) because φ(x) is convex.

Proof of Proposition 24. Again, by Proposition 21, it suffices to show that

1. There exists a point p0 such that
d2

dp2
((
∑n
i=1 βi)Q1(p))

d
dp((

∑n
i=1 βi)Q1(p))

< Q̃′′(p)

Q̃′(p)
, p ∈ (p0, 1)

2. There exists a point p1 such that d
dp

((
∑n

i=1 βi)Q1(p))
∣∣∣
p1
< Q̃′(p1), p1 ∈ (p0, 1)

Begin with item 1. Because F1 ≺R Fi, all i ∈ {2 : n} and by Proposition 21, we know

that there exists a point pi0 such that
Q′′1 (p)

Q′1(p)
<

Q′′i (p)

Q′i(p)
, p ∈ (pi0, 1), i ∈ {2 : n}.
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Let p0 = maxi{pi0} and restrict the following equations so that p ∈ (p0, 1):

d2

dp2
((
∑n

i=1 βi)Q1(p))
d
dp

((
∑n

i=1 βi)Q1(p))
=
Q′′1(p)

Q′1(p)

<

(
β1Q

′
1(p)∑n

i=1 βiQ
′
i(p)

)
Q′′1(p)

Q′1(p)
+ · · ·+

(
βnQ

′
n(p)∑n

i=1 βiQ
′
i(p)

)
Q′′n(p)

Q′n(p)

=
β1Q

′′
1(p) + · · ·+ βnQ

′′
n(p)

β1Q′1(p) + · · ·+ βnQ′n(p)

=
Q̃′′(p)

Q̃′(p)

The proof for item 2 is analogous to the proof for item 2 of Proposition 23:(
n∑
i=1

βi

)
Q′1(p1) = β1Q

′
1(p1) + · · ·+ βnQ

′
1(p1)

< β1Q
′
1(p1) + · · ·+ βnQ

′
n(p1)

= Q̃′(p1)

Proof of Proposition 25. Let Q+(p) =
∑

i∈I+ βiQi(p) and Q−(p) = −
∑

i∈I− βiQi(p)

making Q̃(p) = Q+(p) − Q−(p). By Proposition 4, Q+(p) is a quantile function

because it is a positive weighted sum of quantile functions. Likewise, Q−(p) is a

quantile function because it is the negative of a negative weighted sum of quantile

functions.

Let F+ be the probability distribution whose quantile function is Q+(p). If I+

has more than one member, then by Proposition 23, F+ ≺R F̃n; by Proposition 20,

F̃n has heavier right tails than F+; and so there exists a point p0 such that Q+(p) <(∑
i∈I+ βi

)
Qn(p), p ∈ (p0, 1). However, it may be true that I+ is the singleton {n},

making Q+(p) =
(∑

i∈I+ βi

)
Qn(p) for all p ∈ (0, 1). Regardless of the members of

I, it is true that Q+(p) ≤
(∑

i∈I+ βi

)
Qn(p), p ∈ (p0, 1). Include an arbitrarily small

positive quantity ε so that Q+(p) <
(∑

i∈I+ βi + ε
)
Qn(p), p ∈ (p0, 1).
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Since Q−(p) is a quantile function, limp→1 (−Q−(p)) ∈ {R,−∞}. In cases where

this limit is either a negative real number or −∞, set κ =
∑

i∈I+ βi + ε. If, however,

the limit is a positive real number, choose an upper bound B ∈ (0,∞) so that

B > −Q−(p), p ∈ (p0, 1). This is possible because Q−(p) is a quantile function and

is therefore nondecreasing in p. Now set κ =
∑

i∈I+ βi +B + ε.
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[18] Jaroslav Hájek. A course in nonparametric statistics. Holden-Day, San Francisco,

1969.

[19] Rebecca Hess, Vivianne H.M. Visschers, and Michael Siegrist. Risk communi-

cation with pictographs: The role of numeracy and graph procesing. Judgment

and Decision Making, 6(3):263–274, 2011.



REFERENCES 114

[20] Thomas P. Hettmansperger and Michael A. Keenan. Tailweight, Statistical In-

ference and Families of Distributions—a Brief Survey. In C. Taillie, Ganapati P.

Patil, and Bruno Baldessari, editors, Statistical Distributions in Scientific Work:

Models, Structures, and Characterizations, pages 161–171. D. Reidel, Dordrecht,

Holland, 1981.

[21] Ronald A. Howard. Decision Analysis: Applied Decision Theory. In Hertz D

B and Melese J, editors, Proceedings of the 4th International Conference on

Operational Research, pages 55–77. Wiley-Interscience, 1966.

[22] Ronald A. Howard. Information Value Theory. IEEE Transactions on Systems

Science and Cybernetics, 2(1):22–26, 1966.

[23] Ronald A. Howard. The Foundations of Decision Analysis. IEEE Transactions

on Systems Science and Cybernetics, 4(3):211–219, 1968.

[24] Ronald A. Howard. Risk Preference. In James E. Matheson and Ronald A.

Howard, editors, Readings in Decision Analysis, pages 429–465. Stanford Re-

search Institute, Menlo Park, CA, 2nd edition, 1977.

[25] Ronald A. Howard. The Evolution of Decision Analysis. In Ronald A. Howard

and James E. Matheson, editors, Readings on the Principles and Applications of

Decision Analysis. Stanford Research Institute, 1st edition, 1983.

[26] Ronald A. Howard. Decision Analysis: Practice and Promise. Management

Science, 34(6):679–695, 1988.

[27] Ronald A. Howard. Speaking of Decisions: Precise Decision Language. Decision

Analysis, 1(2):71–78, 2004.

[28] Ronald A. Howard. Foundations of Decision Analysis Revisited. In Ward Ed-

wards, Ralph F. Miles, and Detlof Von Winterfeldt, editors, Advances in Decision

Analysis: From Foundations to Applications, pages 32–56. Cambridge University

Press, 2007.



REFERENCES 115

[29] Edwin T. Jaynes. Prior Probabilities. IEEE Transactions on Systems Science

and Cybernetics, 4(3):227–241, 1968.

[30] Harold Jeffreys. An Invariant Form for the Prior Probability in Estimation

Problems. Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 186(1007):453–461, 1946.
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